NI 43-101 Technical Report for the Frotet Gold Project

Prepared for:

Northway Resources Corp. 310-119 West Pender Street Vancouver, BC, V6B 1S5

And

Kenorland Minerals Ltd. 310-119 West Pender Street Vancouver, BC, V6B 1S5

Prepared by:

Thomas Hawkins P.Geo, OGQ member 2200

Rémi Charbonneau Ph.D. P.Geo, OGQ member 290

Date: December 16, 2020 Effective Date: September 30, 2020

TABLE OF CONTENTS

1.0	SUMI	ЛARY	7
2.0	INTRO	DDUCTION	8
2.1	Inv	olved Staff	10
3.0	RELIA	NCE ON EXPERTS	11
4.0	PROP	ERTY DESCRIPTION AND LOCATION	11
5.0	ACCE:	SSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	14
5.1	AC	CESSIBILITY	14
5.2	CLI	MATE	15
5.3	LO	CAL RESOURCES	16
5.4	INF	RASTRUCTURE	16
5.5	PH'	YSIOGRAPHY	17
6.0	HISTO	DRY	18
6.1	HIS	TORICAL EXPLORATION CAMPAIGNS 1957-2017	18
6.2	HIS	TORICAL DRILLING 1957-2017	24
7.0	GEOL	OGICAL SETTING AND MINERALIZATION	28
7.1	REG	GIONAL GEOLOGY	28
7	.1.1	OPATICA SUB-PROVINCE	28
7	.1.2	REGIONAL STRATIGRAPHY	30
7	.1.3	REGIONAL STRUCTURE	35
7	.1.4	REGIONAL METAMORPHIC DOMAINS	35
7.2	LO	CAL GEOLOGY	36
7	.2.1	STRATIGRAPHY AND INTRUSIVE ROCKS	36
7	.2.2	GEOCHEMICAL COMPOSITIONS	
7	.2.3	TECTONIC AFFINITY AND STRATIGRAPHIC CORRELATIONS	
7	.2.4	STRUCTURAL GEOLOGY	58
7	.2.5	METAMORPHIC DOMAINS	
7.3	MI	NERALIZATION and ALTERATION	
	.3.1	REGIONAL TARGETS	
7	.3.2	REGNAULT TARGET AREA	86

8.0	DEPOSIT TYPES	94
8.1	GREENSTONE HOSTED OROGENIC QUARTZ VEIN DEPOSITS	94
8.2	GOLD-RICH VOLCANOGENIC MASSIVE SULPHIDE DEPOSITS	96
8.3	FROTET-TROILUS GREENSTONE BELT DEPOSITS	97
9.0	EXPLORATION	97
9.1	LIDAR, AERIAL IMAGERY and SURFICIAL GEOLOGY	98
9.2	TILL, PEBBLE and ROCK SAMPLING	102
9.3	BEDROCK MAPPING	109
9.4	GEOPHYSICAL SURVEYS	117
10.0	DRILLING	120
11.0	SAMPLE PREPARATION, ANALYSES, SECURITY	124
11.1	SAMPLE PREPARATION and ANALYSES	124
11.2	2 SECURITY	126
12.0	DATA VERIFICATION	126
23.0	ADJACENT PROPERTIES	129
24.0	OTHER RELEVANT DATA AND INFORMATION	130
25.0	INTERPRETATIONS AND CONCLUSIONS	131
26.0	RECOMMENDATIONS	132
27.0	REFERENCES	134
Certific	cate of the Qualified Person	141
28.0	Appendix A	143
29 N	Annendix B	183

LIST OF FIGURES

Figure 4-1: Location of the Frotet property, Quebec	12
Figure 4-2: Mining title map of the Frotet Property	13
Figure 5-1: Land access and camp locations in the vicinity of the Frotet land package.	
Figure 5-2: Frotet core shack and core racks	16
Figure 5-3: Typical terrain and vegetation of the Frotet Project	17
Figure 6-1: Digitized lake sediment samples covering the Frotet project	
Figure 6-2: Digitized soil samples covering the Frotet project	
Figure 6-3: Digitized rock samples covering the Frotet project	23
Figure 6-4: Digitized rock lithogeochemical samples covering the Frotet project	24
Figure 6-5: Location map of historical drilling within the Frotet project, displaye	
drilling was completed	27
Figure 7-1: Simplified geology of the Superior Provinceshowing the location of the F	rotet project within
the Opatica sub-province	29
Figure 7-2: Geologic map of the Frotet-Evans greenstone belt. The Frotet proje	ct is located in the
eastern Frotet-Troilus segment of the belt	30
Figure 7-3: Location and chemostratigraphy of the Frotet-Evans greenstone belt. Ada	apted from Baily and
Dion, 2002	31
Figure 7-4: Stratigraphic relationships within formations and members of the	Troilus Group after
Gosselin (1996)	32
Figure 7-5: Distribution and stratigraphy of the Troilus Group formations as defined	l by Gosselin (1996).
	33
Figure 7-6: Metamorphic map of the Frotet-Evans greenstone belt. Adapted from Fi	raser et al, 1978 and
Simard, 1987	36
Figure 7-7: Regional geology of the Frotet-Troilus segment, after SIGEOM regiona	l mapping. Regional
units correspond to broad compositional groups that were used to build the 2019 μ	property scale target
area maps	39
Figure 7-8: Field photographs of the main lithologies underlying the Frotet property	42
Figure 7-9: Classification diagrams for volcanic rocks of the Frotet property a) Nb/Y v	s Zr/Ti (after Pearce
1996); b) TAS diagram (after Le Bas et al., 1986); c) AFM diagram (after Irvine and Ba	ragar, 1971) 48
Figure 7-10: Selected XY major element diagrams for volcanic rocks: a) SiO_2 vs MnC	b) SiO ₂ vs Fe ₂ O ₃ ; c)
SiO ₂ vs Al ₂ O ₃ ; b) SiO ₂ vs MgO	49
Figure 7-11: REE spider diagram plot against an E MORB norm after Sun and McDonc	ough (1989)50
Figure 7-12: Composition of intrusive rocks of the Frotet property: a) TAS diagrar	n for plutonic rocks
(Middlemost, 1994), and b) Y vs Zr diagram illustrating three distinct groups of intrus	ive compositions.51
Figure 7-13: REE spider diagrams with respect to a primitive mantle norm, after S	un and McDonough
(1989). These diagrams highlight different fractionation trends for the different uni	ts, corresponding to
different levels of differentiation from primitive to evolved. a) Granitoid (units 11	and 12); b) Gabbro
(10G) and blue quartz diorite (15Dpq) with two distinct composition trends; c) Xeno	lithic gabbro (10Gx);
d) Ultramafic intrusive rocks (9U)	52

Figure 7-14: Y vs Zr trace elements diagrams for volcanic rocks of the Frotet property	53
Figure 7-15: Tectonic discrimination diagram for basalts a) Ti vs Zr after Pearce and Cann (1973); b) Th
Zr-Nb diagram after Wood (1980)	54
Figure 7-16: Tectonic discrimination diagrams for intrusive rocks of the Frotet property a) Nb $^{\circ}$	vs ۱
diagram for granites after Pearce et al. (1984); b) Tectonic classification of mafic igneous rocks a	afte
Cabanis and Lecolle (1989); c) Nb vs La diagram showing three different compositional trends	fo
ntrusive rocks; d) Y vs La diagram showing three different composition trends for intrusive rocks	55
Figure 7-17: Compositions and tectonic affinity for units of the Frotet, Mesiere, Chatillon and Pa	rke
formations. a) REE profile (after Sun and McDonough, 1989); b) Tectonic discrimination diagram (a	aftei
Wood, 1980)	57
Figure 7-18: Tectonic affinity of gabbro (10G) and blue quartz diorite (15Dpq) units across the Fr	ote
property, based on Th-Zr-Nb diagram by Wood (1989)	58
Figure 7-19: Structural geology and structural domains of the Frotet-Troilus segment of the Frotet Ev	vans
greenstone belt (Gosselin, 1996)	59
Figure 7-20: Structural domains of the Frotet property based on 2019 mapping and Gosselin, 1996	61
Figure 7-21: Stereonets depicting foliation orientations in each domain. The red line represents	the
average maximum eigenvector orientation with the associated average pole (red dot)	62
Figure 7-22: Representative folding mapped on the Frotet property; A) exhibits folding of a quarta	z fe
carbonate vein within the Frotet area, B) intense folding of intermediate-felsic clasts within the	e La
Fourche area	63
Figure 7-23: Hinge measurements in Domain 2 (yellow circles) exhibit a NE-SW trend; whereas an	EW
trend characterizes Domain 3 (red circles)	63
Figure 7-24: V1 type vein (station 19CD-162) is folded and cross-cuts foliation; plotted on the stered	one
are a number of poles for foliation (green poles) in relation to V1 veins (red poles and contouring). \dots	65
Figure 7-25: Parasitically folded V2 type vein with weak localized crenulation (station 19CD-023)	66
Figure 7-26: Sub-linear V3 type veins hosted by a magnetic mudstone (station 19CD-220); this vein	type
s acutely ccw to foliation by ~20°	67
Figure 7-27: Planar and massive V4 type vein (station 19FM-276); other planes of V4 veins (red)	are
plotted against an average foliation (green) on the stereonet	68
Figure 7-28: Massive V5 type vein (station 19CD-257); general trend (red) plotted against folia	ıtior
(green) that varies in orientation proximal to vein	69
Figure 7-29: Metamorphic map of the Frotet-Troilus segment of the Frotet-Evans greenstone	belt
Adapted from Simard, 1987	72
Figure 7-30: Regional till chemistry and target areas – Au (ppb)	74
Figure 7-31: Regional till geochemistry and target areas – Ag (ppb)	75
Figure 7-32: Regional till geochemistry and target areas – Cu (ppm)	75
Figure 7-33: Regional till geochemistry and target areas – Zn (ppm)	76
Figure 7-34: Regional till geochemistry and target areas – Pb (ppm)	76
Figure 7-35: Regional till geochemistry and target areas – As (ppm)	77
Figure 7-36: Regional till geochemistry and target areas – Bi (ppm)	77
Figure 7-37: Regional till geochemistry and target areas – Cd (ppm)	78
Figure 7-38; Regional till geochemistry and target areas — Co (ppm).	. 78

Figure 7-39: Regional till geochemistry and target areas – Li (ppm)	79
Figure 7-40: Regional till geochemistry and target areas – Mo (ppm)	79
Figure 7-41: Regional till geochemistry and target areas – Sb (ppm)	80
Figure 7-42: Regional till geochemistry and target areas – Te (ppm)	80
Figure 7-43: Regional till geochemistry and target areas – W (ppm)	81
Figure 7-44: Regional rock geochemistry and target areas – Au (ppm).	83
Figure 7-45: Regional rock geochemistry and target areas – Ag (ppm).	84
Figure 7-46: Regional rock geochemistry and target areas – Cu (ppm).	
Figure 7-47: Regional rock geochemistry and target areas – Zn (ppm)	85
Figure 7-48: Regional rock geochemistry and target areas – Pb (ppm)	85
Figure 7-49: Map showing the gold values in till and rock samples, and drill hole location	is at the
Regnault	86
Figure 7-50: Photographs of gold rich boulders found at the Regnault target A) large boulder E	3) Quartz
vein from gold rich boulder (408 ppm gold) showing relative angle to the dominant meta-diorite	foliation
C) Vein in wall rock D) Meta volcano sedimentary or silificied metasedimentary wall rock, no veir	ıs 88
Figure 7-51: Drilling over magnetic data: dRTP (top), AS (bottom)	89
Figure 7-52: Drilling over completed ground IP survey (300msl slice); chargeability (top), r	esistivity
(bottom)	90
Figure 7-53: Cross section of drill hole 20RDD007with gold assays and 3D inversions of the	25m line
spaced magnetic survey (MVI Amplitude), and the ground IP chargeability	92
Figure 7-54: Photographs of core from drill hole 20RDD007 with gold and silver assays	93
Figure 7-55: Detailed photographs showing pyrite crystallinity in cut hand sample and visible go	ıld in drill
core from 20RDD007.	94
Figure 8-1: Schematic of Greenstone Hosted Gold Deposits and Volcanogenic Massive Sulphide	Deposits
(from Dube & Gosselin, 2007).	96
Figure 9-1: Map showing the extent of the aerial Lidar data acquired in 2019 (red outline)	99
Figure 9-2: Map showing the location of the high resolution aerial photographs acquired in 2019) 100
Figure 9-3: Surficial geology map of the Frotet property, compiled from Québec eco forestry ma	ps 101
Figure 9-4: Till sample locations collected on the Frotet Project.	103
Figure 9-5: Map showing the location of 15kg till samples collected in 2019	105
Figure 9-6: Map showing the location of pebble till samples collected in 2019	107
Figure 9-7: Map showing the location of rock samples collected in 2019	108
Figure 9-8: Target areas and location of 2019 mapping program.	110
Figure 9-9: Geology map of the Troilus and Cressida areas.	114
Figure 9-10: Geology map of the La Fourche area	115
Figure 9-11: Geology map of the Chatillon, Roadside and Regnault areas	116
Figure 9-12: Geology map of Frotet anomalous areas.	117
Figure 9-13: Map showing the flight lines of airborne magnetic surveys by grid	118
Figure 9-14: Location of the Induced Polarization survey grid over gold results of the Regnau	ılt target
area. Gold value above 5 ppm were obtained from boulder sampling	120
Figure 10-1: Diamond drill hole locations at the Regnault target, completed 2020	122
Figure 12-1: Plot of Au analysis for Standard ORFAS 219	127

Figure 12-2: Plot of Au analysis for Standard OREAS 216b	128
Figure 12-3: Plot of Au analysis for Standard BLK-BSS-2020	128
Figure 23-1: Land Tenure of the Frotet-Troilus Belt (date: July 24, 2020)	130
LIST OF TABLES	
Table 2-1: Earn-in agreement between Kenorland and SMMCL work expenditure summary	9
Table 2-2: Purchase agreement summary for O3 Mining titles	10
Table 6-1: Historical diamond drilling within the Frotet project	25
Table 6-2: Selected drill results from the Baie Moleon VMS Deposit	28
Table 6-3: Selected drill results from the Lac La Fourche prospect area	28
Table 7-1: Regional stratigraphy of the Troilus Group within the Frotet-Troilus segment aft	ter Gosselin
(1996)	34
Table 7-2: (next pages) - Descriptions of field units underlying the Frotet property. S	tratigraphic
association are based on the description and spatial distribution of the Troilus Group formati	ons defined
by Gosselin (1996)	39
Table 7-3: Summary of structures and associated mineralization recorded and interpreted or	n the Frotet
property	69
Table 9-1: Lithology codes for field data collection on the Frotet property	111
Table 9-2: Summary of datasets generated during the 2019 field mapping program	
Table 10-1: Regnault target diamond drill hole information	121
Table 10-2: Summary of significant Regnault drilling assays	
Table 26-1: Recommended work program budget	

1.0 SUMMARY

This report describes the gold potential and exploration activities related to the Frotet Gold Project of Northway Resources Corp and Kenorland Minerals Ltd. This property is the host of a recent discovery from drilling of IP anomalies at the head of a boulder and till auriferous dispersal train. Significant Au-Ag mineralization has been intersected in many of the drill holes which confers a great merit to the Frotet Project.

The present Report is presented in compliance with disclosure and reporting requirements set forth in the Canadian Securities Administrators' National Instrument 43-101, "Standards of Disclosure for Mineral Projects" (collectively, "NI 43-101"), for the Frotet Gold Project ("Frotet", or the "Project").

The Frotet property is located in the Frotet-Troilus sector of the Frotet-Evans greenstone belt approximately 120 kilometres north of Chibougamau, Québec and approximately 5 kilometers from the past-producing Troilus Au-Cu Mine. Current access to the property is via logging roads and boats with portions only accessible by helicopter. A transmission line runs through the property which connected the past producing Troilus mine with Chibougamau. Topography at the Frotet Property is characterized by rolling plains at approximately 400m above sea level.

The Property is centered at latitude 50.8872830 and longitude -74.5774400, and is within NTS map sheets 32J09, 32J10, 32J15, and 32J16. The total Property is composed of 724 mining titles and covers an area of land totaling 39,365 hectares. Within the total land package 700 mining titles covering 38,056 hectares are included within the earn-in option agreement between Kenorland Minerals Ltd. ("Kenorland") and Sumitomo Metal Mining Canada Ltd. ("SMMCL"). The remaining 24 claims (1,309 hectares) are under an option agreement to be purchased from O3 Mining.

The Frotet-Troilus belt has been extensively explored since the late 1950's which triggered the discovery of several small Zn-rich VMS deposits including the Baie Moleon VMS deposit in 1962, located within the Frotet project land package. Continued exploration across the belt discovered many small gold showings and eventually the Troilus Au-Cu Archean porphyry deposit was discovered in the late 1980's by the Kerr Addison group. The Troilus Au-Cu deposit exploited by open mining was in commercial production from 1996 to 2010.

The Frotet project lies within the Opatica sub-province, part of the Archean Superior Province, and is located within the eastern Frotet-Troilus segment of the Frotet-Evans greenstone belt (Gosselin, 1996). The Opatica sub-province contains granitoid-gneissic rocks with U-Pb zircon ages from 2833 – 2702 Ma (Davis et al., 1995), and supracrustal rocks in the Frotet-Evans greenstone belt with ages of 2793 – 2755 MA (Pilote et al, 1997) which contrasts with the younger supracrustal rocks of the Abitibi sub-province to the south. Within the belt are several syn-volcanic and post-deformational intrusive rocks, of which the earlier syn-volcanic granodiorite-diorite-gabbro intrusive complexes seem to the most significant host rocks to economic mineralization within the belt including the Troilus Au-Cu deposit and the recently discovered Regnault Target by Kenorland.

The regional till and boulder prospecting programs completed by Kenorland Minerals between 2018 and 2020 have delineated several areas of geochemical anomalism which may have mineralized bedrock sources within the Frotet project. These include the North and South Chatillon, La Fourche, Cressida, and the Regnault area which is now the most advanced target area within the project. The geochemical signature at Regnault is Au-Ag-Te-Bi-W-Mo±Cu-Pb-Cd. The main gold-silver mineralization encountered to date is associated with quartz±calcite veins that often occur at lithologic contacts within the generally low-strain intrusive complex with surface boulder samples returning up to 408 ppm Au and >200 ppm Ag. Silicified and pyritized volcaniclasitic rocks sampled from boulders have also returned low to moderate grade (0.5-2.7 ppm Au) at surface, but have not been encountered in drilling to date. It is believed that the veins and mineralization are early (possibly syn-late magmatism), and therefore predeformation.

A high-resolution drone aerial magnetic survey and ground IP survey were completed in 2019 prior to a two phase drill program which was completed in 2020. Phase I drilling was completed February-March 2020 and consisted of 15 diamond drill holes for 5,919.61m and Phase II was completed June-July 2020 that included completion of 8 diamond drill holes for 1,902.49m. In total, Kenorland has completed 23 drill holes for 7,822.10m of diamond drilling on the Regnault target. No historical drilling has been completed within the target area. Significant Au-Ag mineralization has been intersected with several intersect from 5 to 114.3 g/t Au. The most significant intercept returned from drill hole 20RDD007; 29.08m @ 8.47 ppm Au and 12.23 ppm Ag, including 11.13m @ 18.43 ppm Au and 25.93 ppm Ag but later holes 20RDD022 and 20RDD023 in that vicinity retuned lower intersects which suggest that a better understanding of the geometry of the mineralisation is to be achieved from further drilling.

A total exploration budget of \$3.8M is recommended in two phases with a non contingent phase I follow by a contingent Phase II. These exploration works will include infilling and expansion holes at the Regnault target area.

2.0 INTRODUCTION

The purpose of this Report is to provide a technical summary of the Project in accordance with the requirements of the TSX Venture Exchange in connection with the proposed acquisition of Kenorland Minerals Ltd. by Northway Resources Corp. The transaction will be completed in accordance with the terms of the amalgamation agreement dated September 14, 2020 pursuant to which Kenorland will amalgamate with a wholly-owned subsidiary of Northway and shareholders of Kenorland will receive shares of Northway. The transaction will constitute a reverse takeover transaction under the rules of the TSX Venture Exchange.

Kenorland Minerals Ltd. ("Kenorland" or the "Company") commissioned Rémi Charbonneau of Inlandsis Consultants senc to co-authored the present report in compliance with disclosure and reporting requirements set forth in the Canadian Securities Administrators' National Instrument 43-101, "Standards of Disclosure for Mineral Projects" (collectively, "NI 43-101"). He, the second Author, is independent of Northway, Kenorland, the property and any vendors of the property applying to all tests

in Section 1.5 of NI43-101. Both Authors accessed the Frotet Property recently, in March 2020 for the first (Thomas Hawkins) and August 2019 for the second (Rémi Charbonneau).

This report has been prepared from public documents and reports and data provided by Kenorland. Such reports and data are cited as appropriate in the text of this report and a complete bibliography of references cited is listed in Section 27.0 "References".

Kenorland Minerals Ltd. staked the Frotet Gold Project in March 2017 through map staking, which initially comprised 1032 claims totalling 55,921 hectares. Between March 2017 and May 2020, several claims have been purchased from third parties, as well several claims have been allowed to lapse following submittal of assessment work and exploration expenditures. The current Property consists of 724 claims totalling 39,365 hectares. The mineral titles are shown in Figure 4.2, and claim lists are presented in the Appendices.

In April 2018 Sumitomo Metal Mining Canada Ltd. ("SMMCL") entered into an earn-in option agreement with Kenorland, in which SMMCL may acquire 80% interest in the Frotet project by spending a minimum aggregate work expenditure of \$8,300,000. A summary of the minimum and aggregate work expenditures (including claim renewal and management fees) required during the Phase 1 and Phase 2 of the option agreement is presented in Table 2-1.

Table 2-1: Earn-in agreement between Kenorland and SMMCL work expenditure summary.

Period	Minimum Work Expenditure	Aggregate Minimum Work Expenditure	Earn In Ownership
Phase 1 Period completed August 4, 2020	\$4,300,000	\$4,300,000	SMM (65%), Kenorland (35%)
Phase 2 Period ending August 4,2021	\$4,000,000	\$8,300,000	SMM (80%), Kenorland (20%)

Between April 2018 and August 4, 2020 SMMCL has provided funding for the completion of \$4,300,000 of work expenditures. On October 1st 2020 SMMCL accepted its 65% Participating Interest in the Joint Venture Property, and elected to contribute an additional \$4,000,000 to Exploration Expenditures within one year with the intention of vesting additional 15% Participating Interest in the Frotet property.

Upon completion of the Phase 2 earn-in, Kenorland and SMMCL will enter into a Joint Venture Agreement wherein both parties shall contribute or expend in cash towards exploration expenditures pro-rata to its then participating interest in the Frotet project (Joint Venture Property). If the participating interest of either Kenorland or SMMCL is diluted to 10% or less by reason of failure to complete funding contribution requirements, that participating interest will automatically be converted to a 2% Net Smelter Return Royalty ("NSR") in the Frotet project.

In April 2020 Kenorland entered into a purchase agreement with O3 Mining Inc. ("O3 Mining"), in which Kenorland may purchase 100% interest in the Block 32J10 claims (mining titles shown in Figure 4.2) by

making aggregate payments of \$900,000 by April 24, 2023. A summary of the staged payments is presented in Table 2-2.

Table 2-2: Purchase agreement summary for O3 Mining titles.

Period	Scheduled Payment	Aggregate Payment
Upon signing of agreement completed April 24, 2020	\$100,000	\$100,000
First Year Anniversary ending April 24, 2021	\$150,000	\$250,000
Second Year Anniversary ending April 24, 2022	\$250,00	\$500,000
Third Year Anniversary ending April 24, 2023	\$400,000	\$900,000

Kenorland completed the first payment of \$100,000 to O3 Mining upon the signing of the agreement on April 24, 2020. As part of the agreement, Kenorland will be responsible for maintaining the claims in good standing, by completing require work expenditures and submitting assessment credits. Once the purchase agreement has been completed, the Block 32J10 claims will be incorporated into the Kenorland-SMMCL option agreement. The purchase agreement is in good standing.

Unless otherwise noted, all costs contained in this report are denominated in Canadian dollars (CAD). Where gold grades are stated in this report, the abbreviation 'opt' means troy ounces per short ton and the abbreviation "gpt" or "g/t" means gram per metric tonne. For measurement units, the metric system of measurements has been used in this report, and all coordinate locations refer to the UTM NAD 1983 Zone 18 North datum.

2.1 Involved Staff

Rémi Charbonneau, PhD, P.Geo. (OGQ #290) from Inlandsis Consultants has been tasked to co-author the present technical report, in partnership with Thomas Hawkins PhD P.Geo. (OGQ #2200).

The geochemical till surveys that were conducted by SL Exploration Inc were supervised by Alex Gallardo Valade Msc. P.Geo. (OGQ #2013), by Steven Lauzier, P.Geo. (OGQ #1430), by Pierre-Alexandre Pelletier Msc. P.Geo. (OGQ #1324) and by David Fafard Msc. P.Geo. (OGQ #1814) while surveys completed by IOS Services Geoscientifiques were supervised by Réjean Girard (OGQ #521) and Natacha Fournier (OGQ #591).

A prospecting campaign was conducted in 2019 and supervised by Alex Gallardo Valade (OGQ #2013), David Fafard(OGQ #1814) and Steven Lauzier (OGQ #1430). A mapping survey was completed by Esther Bordet P.Geo. (OGQ #445 and OGQ #460).

The drill work was done under the supervision of Alex Gallardo Valade (OGQ #2013) and Thomas Hawking (OGQ #2200). They logged the cores and supervised the lab work, including sample

preparation, sample shipping, QA-QC and the sample database. Steven Lauzier, (OGQ #1430) assisted in the supervised of the drilling operations.

Airborne MAG survey was completed under supervisions of Joël Dubé, P.ENG #122937. The IP survey was done under supervision of Catherine Phaneuf, P.Geo OGQ1860. Khorram Khan (OGQ #2152) supervised the work performed by Geo Data Solutions GDS Inc.

3.0 RELIANCE ON EXPERTS

The Authors do not rely on other experts for information concerning legal, political, environmental, or tax matters.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Frotet property is located in the Frotet-Troilus sector of the Frotet-Evans greenstone belt approximately 120 kilometres north of Chibougamau, Québec (Figure 4-1). Much of the property may be accessed by logging roads, and the gravel access road to the Troilus Mine site which is located approximately 5km to the north of the current property. These roads are accessed via the Route de Nord, which connects the project area with the town of Chibougamau. The remaining sections of the property may be accessed via boat utilizing the large Frotet and Troilus Lakes, or via helicopter which is required to reach the northeastern portion of the land package.

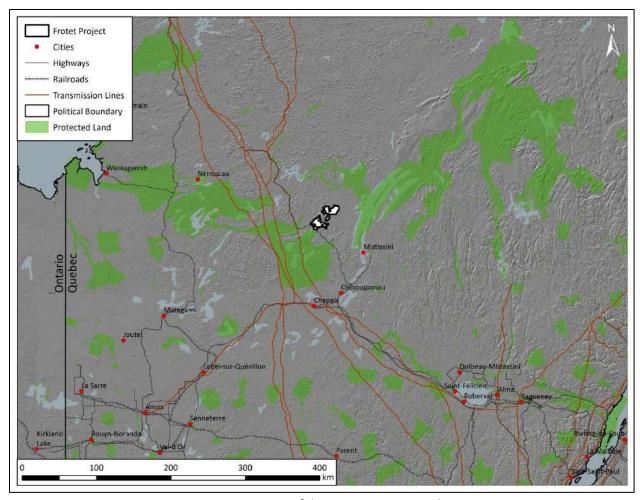


Figure 4-1: Location of the Frotet property, Quebec.

The Property is centered at latitude 50.8872830 and longitude -74.5774400, and is within NTS map sheets 32J09, 32J10, 32J15, and 32J16. The total Property is composed of 724 mining titles and covers an area of land totaling 39,365 hectares. Within the total land package 700 mining titles covering 38,056 hectares are included within the earn-in option agreement between Kenorland and SMMCL, a list of titles is provided in Appendix A. Within the Kenorland-SMMCL option agreement are 8 mining titles which carry a 2% NSR, of which 1% may be bought back for \$1,000,000 at any time from the previous mining title holder David Thomas (Figure 4-2). There are no underlying royalties on the remainder of the mining titles held by Kenorland within the Frotet project. Under the purchase agreement with O3 Mining are 24 mining titles covering 1,309 hectares; these titles are listed in Appendix B. A map showing the mining titles which comprise the Frotet project are shown in Figure 4-2.

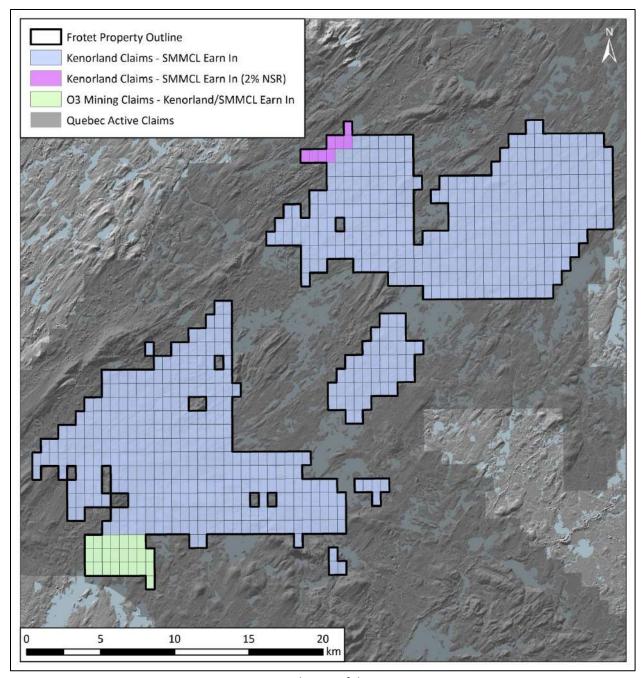


Figure 4-2: Mining title map of the Frotet Property.

Mining title rights for the Frotet project are administered by the *Ministère de l'Énergie et des Ressources Naturelles* ("MERN"). All mining titles of the Frotet project require biennial exploration expenditures and renewal fees.

The 724 mining titles which comprise the Frotet project are all located south of the 52nd degree of latitude, and are all within the title size between 25-100 hectares. The mining titles have good standing dates which range from August 16, 2021 to June 12, 2023, with required work expenditure of \$1,200 per title (709 mining titles) and \$2,500 per title (15 mining titles). All mining tiles will be subject to a \$66.25

claim renewal fee if the work expenditures are submitted prior to the 60th day preceding the expiry date, or twice that (\$132.50) if submitted after the 60th day preceding the expiry date. A complete claim list is presented in Appendix A and B which summarizes the details of the mining titles, and a claim map is provided in Figure 4-2.

Surface disturbance associated with Kenorland's previous and current year's exploration has been limited to the Regnault target area where permitted roads, core shack and lay down area, and drill pads were constructed during the winter 2020 and summer 2020 drill programs. All permits regarding surface disturbance where submitted to and approved by the responsible governing bodies; MFFP (camp intervention permit, land drilling intervention permit, shoreline drilling intervention permit), MERN (camp construction permit), and MDDELC (shoreline drilling CA and amendment submittal). There are no environmental liabilities or reclamation liabilities attached to the property and there are no outstanding legal orders or mandates relating to past or current environmental liabilities on the project.

There are no environmental studies have been carried out on the project. The project is located in a mining friendly jurisdiction that has successfully permitted mining operations in the past, including the past producing Troilus gold mine, and historical operations within the Chibougamau mining camp. To the best of our knowledge no social or community impact studies have been done to date.

Northway Resources Corp. ("Northway") has entered into an amalgamation agreement with Kenorland Minerals Ltd. ("Kenorland") dated September 14, 2020 pursuant to which Northway and Kenorland agreed to complete a three cornered amalgamation whereby a wholly owned subsidiary of Northway will amalgamate with Kenorland to form an new amalgamated entity which will become a subsidiary of Northway. On completion of the proposed transaction, Northway through the acquisition of Kenorland via amalgamation will have a 35% interest in the Frotet Property.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 ACCESSIBILITY

The Property is located 120 kilometers north of the town of Chibougamau, Québec and is accessible by the Route de Nord, a provincially maintained gravel road. The village of Chibougamau is accessible by airplane or provincial roads and has services that are excellent for mineral exploration companies.

Within the Property area there is a network of logging roads, many of which have become overgrown with vegetation and would need to be cleared to passable by four-wheel-drive vehicle. There is also a large network of lakes that allow for boat access. The northeastern portion of the property is comparatively more remote and is accessible only by helicopter.

A permanent camp at the Troilus Mine, which is located just outside the northern property boundary, has provided boarding, food, fuel, telecommunications and medical services during the 2018-19 exploration programs. Two other seasonal camps are located in the immediate proximity of the

property; the Square- Tail Lodge, a fishing outfitters camp has provided accommodation, food and telecommunications during the 2018-19 field seasons, and the Chatillon Logging Camp which has been utilized for accommodation, food and telecommunications during 2018-19 field seasons, and during the 2020 summer drill program.

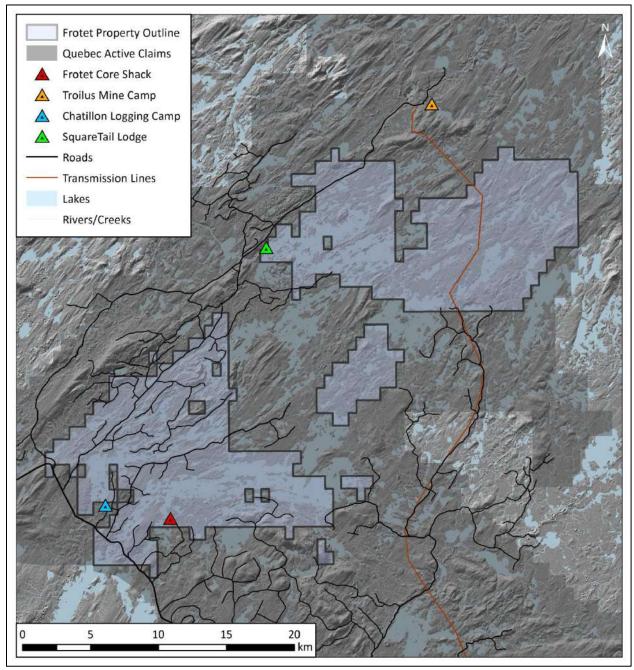


Figure 5-1: Land access and camp locations in the vicinity of the Frotet land package.

5.2 CLIMATE

The region is characterized by a humid continental climate. Average temperatures range from 22 $^{\circ}$ C in the summer to -13 $^{\circ}$ C during winter months. Heavy precipitation is possible throughout the year with the highest average of precipitation days occurring from May through to October. Ground reconnaissance exploration work is most effective in the summer months after snow and ice have melted.

5.3 LOCAL RESOURCES

Chibougamau is the closest moderate-sized town with a population over 7,541 (Statistics Canada, 2016). Forestry and mining are the main economic drivers for the area. All the primary amenities needed for exploration work can be found in Chibougamau such as a hospital, accommodation, groceries and a small airport for chartered flights. Other primary services are also available in Amos (population of 12,671; Statistics Canada, 2016), which is approximately 350 km southwest of Chibougamau.

5.4 INFRASTRUCTURE

The Property has a network of well-maintained logging roads, as well as the Troilus Mine access road. Overgrown logging roads are present throughout the property which could be brushed out in order to access remote areas. The power transmission line which services the Troilus mine crosses through the Frotet Property. The property infrastructure is illustrated in Figure 5-1.

Leading up to the 2020 summer drill program, Kenorland completed permitting for a 20 person camp and commissioned the construction of a core shack (for core logging and core splitting capabilities), core racks, and a lay down area which was completed early June 2020. The site utilized an existing logging road, and is located south of Lac Frotet, east of Regnault bay. The camp location is illustrated in Figure 5-1.

Figure 5-2: Frotet core shack and core racks.

5.5 PHYSIOGRAPHY

Topography at the Frotet Property is characterized by rolling plains at approximately 400m above sea level, typical of the Canadian Shield. The landscape includes many lobate lakes, swamps and rivers. The hydrographic system is dominated by Lac Frotet, Troilus, and Testard which drain into James Bay through the Rupert River flowing northwest of the property. Vegetation is typical of taiga with areas partially covered with black spruce and jack pine forests with frequent wild fires. Most of the property is covered in glacial overburden consisting of till and eskers/glaciofluvial outwash deposits. Outcrop is limited and often masked by thick underbrush and moss. Typical topography and physiography is illustrated in Figure 5-3.

Figure 5-3: Typical terrain and vegetation of the Frotet Project.

6.0 HISTORY

6.1 HISTORICAL EXPLORATION CAMPAIGNS 1957-2017

The Frotet-Troilus Area was first explored following the discovery of a Ni-Cu boulder in 1957, which initiated a series of prospecting, drilling and geophysics campaigns in and around the property. The Québec government also conducted geochemistry, mapping and geophysics surveys and published synthesis reports on larger-scale geology. There are no less than 405 government and assessment reports which are partially included in the Frotet Area. The previous work is summarized below:

In 1959, Dauphin Iron Mines and Ranworth Exploration Limited performed an airborne magnetic (MAG) and electromagnetic (EM) survey (Liss, 1959) while Zulapa Mining Corp Ltd performed a summer field program (Meagher, 1960).

In 1960, Claims Desbiens & Blanchard completed a MAG and EM airborne survey in the Frotet area, previously known as the Macport Property (Dumont, 1960). The same survey was conducted over Lac Troilus for Sirmac Grubstake Syndicate (Moreau, 1960) as well as a prospecting survey (Cooper and Green, 1960). They concluded that there was a lack of interesting mineralization.

In 1964, the Icon Syndicate completed five diamond drill holes which returned interesting Au, Ag, and Cu values leading to the Lac La Fourche-Nord showing (Troop, 1964).

From 1966 to 1967, an airborne magnetic survey was completed by Troilus Mines Ltd. (Flanagan, 1967) The following year, a linecutting, magnetics survey and prospecting campaign was carried out by Rosario Exploration and did not reveal any significant mineralization (Prochnau, 1968).

Between 1971 and 1974, Selco Mining Corp Ltd conducted various magnetic and electromagnetic surveys, diamond drilling and exploration works on their different properties: Regnault, Maures, Group 19, Lac Chatillon, Troilus Lake, and Troilus Area (Asbury et al, 1974)

In 1976 the Societe de Developpement de la Baie-James ("SDBJ") performed a lake sediment survey which revealed multiple geochemical anomalies. In 1978 SDBJ completed a prospecting campaign over the Regnault, Chatillon and Frotet lakes (Bertrand, 1978). The same year, Shell Canada Ltd conducted a geochemical and prospecting survey (Castonguay, 1978).

From 1985 to 1988, Exploration Kerr Addison, Exploration Moisson D'Or, Golden Harvest Exploration, Explorations Muscocho and Claims Wapachee conducted geochemical sampling, diamond drilling, mapping, airborne and ground geophysical surveys in the Frotet-Troilus area (Cashin, 1987; Fraser, 1985; Gauthier and Langshur, 1986; Fraser and Martin, 1987/1988; Zuiderveen and Brodie-Brown, 1988). The Troilus deposit was discovered in this era by Kerr Addison by tracking anomalous boulders back to the bedrock source at Zone 87. The Troilus deposit produced ~2m oz of gold from 1996 – 2010.

In 1989, Canadian Patricia Exploration Limited and Mines d'Or Queenston Ltd conducted a combined airborne magnetic, electromagnetic, gradiometric, VLF and geological survey on then Dileo Lake Property (Dvorak, 1989).

From 1992 to 1994, Placer Dome Inc. performed geological, beep-mat, magnetics, EM, and induced polarisation (IP) surveys and diamond drilling (Beauregard and Gaudreault, 1993; Lortie, 1992; Panneton et al, 1993). Simultaneously, Minnova Inc., Explorations Noranda Ltd and Corporations Miniere Metall conducted airborne magnetics and EM surveys, mapping, IP and geological surveys (Boileau and Turcotte, 1994; Lambert, 1994; Levesque and Speidel, 1993; Magnan, 1992; Magnan and Speidel, 1993; Simard et

al, 1993; Simoneau and Gaucher, 1994; Woolham, 1993).

Between 1995 and 1996, Mines et Exploration Noranda Inc. conducted magnetic-gradiometric and EM geophysical surveys (Allard, 1997; Dessureault and Vermette, 1997) and in tandem with Placer Dome Canada Ltd, they performed prospecting and geologic mapping during the summer of 1995 (Vermette, 1995). That same year, Inmet undertook a humus survey (Cloutier, 1995) along with prospecting and mapping (Piche, 1995), EM surveys and diamond drilling (Boileau and Lortie, 1995; Lambert, 1996). Eastmain Resources Inc. also conducted diamond drilling in 1995 (Stewart, 1996).

From 1998 to 1999, Inmet completed an airborne magnetic and radiometric survey (St-Hilaire, 1999) while SOQUEM Inc. performed ground magnetics, EM and IP surveys on their Melanie and Troilus Free Gold property (Lambert, 1998; Bellavance, 1999). Inco completed a mapping and trenching campaign on their Monique Property (Girard, 1999). Claims Frigon also completed an EM survey and surface exploration work on their Romeo Boisvert property (Bellavance and Pare, 1999; Chainey et al, 1999).

Between 2001 to 2007: SOQUEM conducted geochemistry, IP surveying, ground magnetics, EM resistivity and drilling (Simoneau, 2002; Tshimbalanga, 2004; D'Ambroise and Folco, 2005; Tshimbalanga, 2007). The same years Falconbridge and Beaufield completed an airborne EM survey over the Troilus-Frotet belt using MegaTEM II, for a total of 11,562 line-km (Chinn, 2006), with follow-up exploration on identified geophysical anomalies such as airborne VTEM, borehole EM, basal till, trench sampling, and diamond drillings (Chinn and Corrivaux, 2006).

In 2008, Ressources Unifiees Beaufield Inc. completed an EM and magnetic survey along with diamond drilling during the winter of 2008-2009 (Rivest, 2008; Frappier-Rivard, 2009; Hansen and Hansen, 2009). Concurrently, Claims Robert conducted stripping and diamond drilling on their Frotet-Robert project (Fournier and Lefebvre, 2008).

During the fall of 2011, Beaufield performed surface exploration work and drilling on their Troilus Property (Frappier-Rivard et al, 2012).

In 2015, Frist Quantum Minerals Ltd conducted a helicopter-borne time domain electromagnetic (TDEM) and magnetic survey over their Troilus Property (Venter et al, 2017).

In 2016, Ressources X-Terra Inc. did structural modelling, boulder tracing by remote sensing and geological surveys on their Troilus East Property. The conclusions identified boulder and boulder field targets, major structural trends and NNE to NE structural anomalies similar the past-producing Troilus Mine (Moreau, 2017). During the same period, Tectonic Ressources discovered auriferous boulders and collected 47 till samples either by shovel or by mini-excavator (Laforest 2017) which were submitted for gold analysis by IOS Geoscientifique who interpret the source to be either be very proximal or, due to the high sensitivity of the method, be distal and originating from Troilus Mine (Girard, 2017).

In 2018, Innov Explo, on behalf of Beaufield, wrote a compilation report on the northeastern portion of their Troilus-Tortigny Property (Auger and Brousseau, 2018).

Kenorland has digitize geochemical data from many of the assessment reports that where contained within or partially covered by the original staked property. Efforts to digitize the data were concentrated on historic programs that were more regional exploration in nature and contained surface geochemical data such as lake sediment, soil, and rock geochemistry, as well as rock lithogeochemistry. The database is described in Figures 6-1 through 6-4.

Lake sediment geochemistry data includes 496 samples from two assessment reports (GM42887 and GM43278). Sample locations are presented in Figure 6-1.

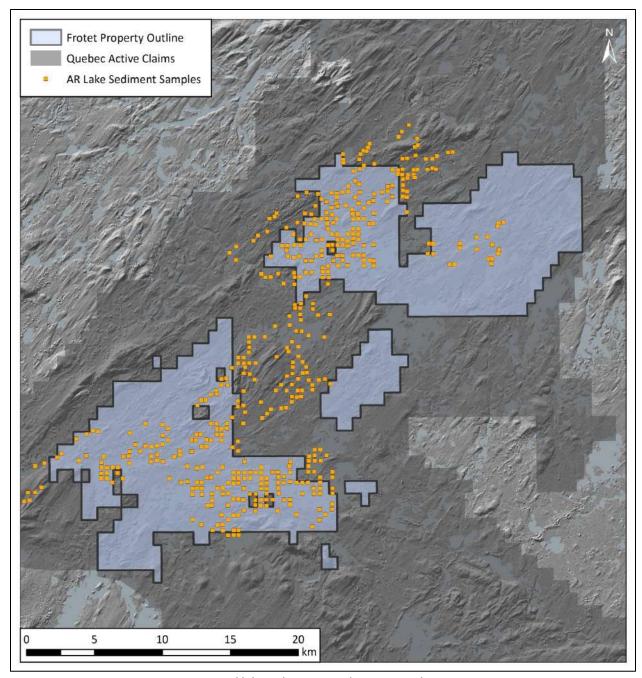


Figure 6-1: Digitized lake sediment samples covering the Frotet project.

Soil geochemistry data includes 3,159 samples from four assessment reports (GM42887, GM43278, GM45114, and GM46338). Sample locations are presented in Figure 6-2.

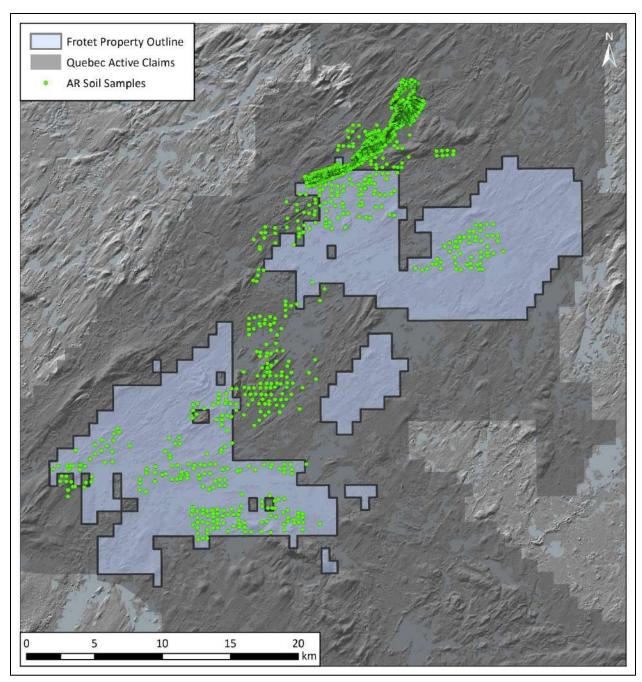


Figure 6-2: Digitized soil samples covering the Frotet project.

Rock geochemistry data includes 4,601 samples from seventeen assessment reports (GM42887, GM43278, GM45114, GM46338, GM51959, GM51960, GM52663, GM53343, GM53948, GM56423, GM56564, GM59797, GM59830, GM59960, GM60681, GM60729, and GM62463). Sample locations are presented in Figure 6-3.

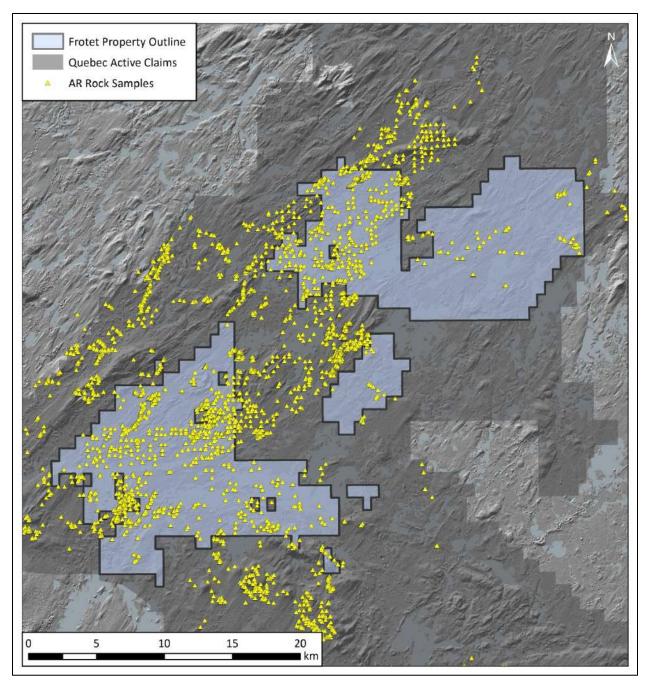


Figure 6-3: Digitized rock samples covering the Frotet project.

Rock lithogeochemistry data includes 656 samples from seven assessment reports (GM46338, GM51959, GM51960, GM52663, GM53343, GM59797, and GM62463). Sample locations are presented in Figure 6-4.

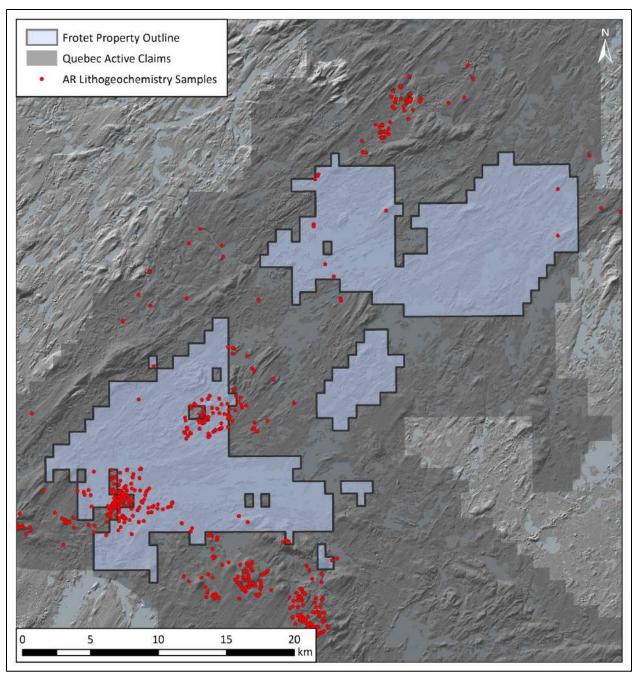


Figure 6-4: Digitized rock lithogeochemical samples covering the Frotet project.

6.2 HISTORICAL DRILLING 1957-2017

Following the initial exploration campaigns of the late 1950's in and around what is now the Frotet property, there have been a number of drilling campaigns over the decades. The earliest recorded drilling was performed by Dauphin Iron Mines Ltd. in 1959, located in the central portion of the belt. The earliest known drilling to have occurred within the current Frotet project was in 1962 by Bilson Québec Mines ltd. which discovered the Baie Moleon VMS deposit (Refer to Figure 6-5 for location).

In total, there have been 116 historical diamond drills holes for 12,199m of drilling, collared within the Frotet project. The Author's has not verified the exact location of the drill holes from maps contained in the assessment reports, nor the accuracy of the meterage completed. All data has been summarized from the SIGEOM database, and is summarized in Table 6-1.

Table 6-1: Historical diamond drilling within the Frotet project.

Year	Table 6-1: Historical diamond drilling with Company	Report No.	No. DHH	Total Meters
rear	BILSON QUEBEC MINES LTD	GM 12700	12	689.00
1962	CLAIMS BOTSFORD,ICON SYND	GM 13181	3	194.00
	CLAIMS RADISICS, QUEON GRUBSTAKE SYND	GM 13188	3	154.00
	CANADIAN NICKEL CO LTD	GM 13736	3	70.00
1964	CLAIMS BECKETT, ICON SYND	GM 14176	5	321.00
1965	BILSON QUEBEC MINES LTD, FALCONBRIDGE NICKEL MINES LTD	GM 15936	5	706.00
	SELCO MINING CORP LTD	GM 28284	1	43.00
	SELCO MINING CORP LTD	GM 28311	1	36.00
1972	SELCO MINING CORP LTD	GM 28754	3	165.00
	BILSON QUEBEC MINES LTD,SELCO MINING CORP LTD	GM 29112	5	476.00
	SELCO MINING CORP LTD	GM 28974	4	141.00
1973	SELCO MINING CORP LTD	GM 29172	2	76.00
19/3	SELCO MINING CORP LTD	GM 29478	3	163.00
	SELCO MINING CORP LTD	GM 29511	6	242.00
	BILSON QUEBEC MINES LTD, FALCONBRIDGE NICKEL MINES LTD, SELCO MINING CORP LTD	GM 29907	4	773.00
1974	SELCO MINING CORP LTD	GM 30244	1	44.00
	S D B J,SELCO MINING CORP LTD	GM 34067	6	229.00
	SELCO MINING CORP LTD	GM 31352	2	20.00
1975	S D B J,SELCO MINING CORP LTD	GM 34061	2	80.00
	S D B J,SELCO MINING CORP LTD	GM 34069	4	289.00
1984	CIE DES PETROLES AMOCO CANADA	GM 41227	2	213.00
1986	EXPLORATION KERR ADDISON INC	GM 44392	2	342.00
1986	EXPLORATION KERR ADDISON INC	GM 45114	10	1341.00
1987	EXPLORATION KERR ADDISON INC	GM 46338	2	277.00
1967	EXPLORATIONS MUSCOCHO LTEE	GM 47326	2	195.00
1988	SOQUEM INC	GM 58639	1	175.00
1993	PLACER DOME INC	GM 52168	3	848.00
1996	CORPORATION MINIERE INMET,LES EXPLORATIONS MUSCOCHO LTEE	GM 54149	2	487.00
	FALCONBRIDGE LTEE	GM 56325	3	993.00
	MINES ET EXPLORATION NORANDA INC	GM 54937	1	236.00
1997	CORPORATION MINIERE INMET	GM 56183	1	216.00
	CORPORATION MINIERE INMET	GM 56326	2	503.00

1998	SOQUEM INC	GM 56423	1	39.00
2005	FALCONBRIDGE LTEE	GM 62463	2	459.00
2006	FALCONBRIDGE LTEE	GM 62860	1	201.00
2011	RESSOURCES UNIFIEES BEAUFIELD INC	GM 67268	6	763.00

Due to the poor outcrop exposure over much of the Frotet-Troilus belt, historical drill targeting was based heavily on geophysical surveys, and lesser surface exploration; mapping, prospecting or collecting soil and/or humus geochemistry. After the early success of discovering VMS deposits (Baie Moleon, Lessard, and De Maures) in the southern portion of the belt, many subsequent drill campaigns targeted geophysical conductors across the Frotet project area with limited success. Within the Frotet project two areas of interest have been identified through the historical drilling; the Baie Moleon Deposit (Cu-Zn-Ag-Au) and the Lac La Fourche target area (Au-Ag-Cu). Location of these anomalous areas is presented in Figure 6-5.

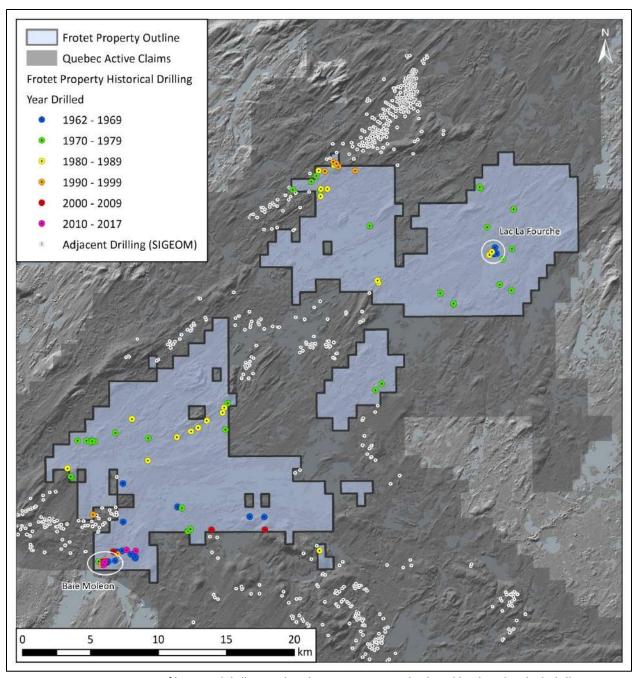


Figure 6-5: Location map of historical drilling within the Frotet project, displayed by decade which drilling was completed.

The Baie Moleon VMS deposit was discovered in 1962 by the Bilson Québec Mines group when they completed a 12 drill holes campaign. Several drill campaigns occurred in the 1960's and 70's, and then only sporadically during the 1996 and 2011. The Author's has reviewed available assessment reports which contained drill holes logs with assays, and summarized selected assay results in Table 6-2. The Author's has made no effort to scrutinize this data, or check the QAQC protocols completed during these drill programs, and is presenting this data for reference purposes only.

Table 6-2: Selected drill results	from the Baie Moleon VMS Deposit.
Tubic 0 2. Sciected arm results	profit the bale wiolcon vivis beposit.

HOLE ID	From (m)	To (m)	Interval (m)	Cu (%)	Zn (%)	Au (ppm)	Ag (ppm)
F-4	45.48	46.85	1.37	2.08	2.40	2.74	39.43
F-5	24.63	29.05	4.42	1.30	2.36	1.03	25.03
F-6	31.39	37.34	5.94	2.82	1.12	3.43	52.80
F-10	40.39	41.91	1.52	2.69	4.98	2.74	41.83
F-12	34.14	38.92	4.78	1.92	2.95	1.71	35.66
F-13	28.35	30.78	2.44	0.25	3.54	0.44	5.55
F-74-10	104.18	106.77	2.59	1.02	3.59	0.20	24.69
F-74-11	100.34	101.74	1.40	2.60	1.70	0.20	34.63
MO-96-01	78.00	87.20	9.20	1.82	1.97	0.39	24.89
and	91.30	94.75	3.45	1.40	4.22	0.81	23.05
TR-11-01	95.20	97.80	2.60	1.61	6.14	0.51	31.30
TR-11-04	94.1	96.55	2.45	1.52	1.67	0.26	26.55

The Lac La Fourche prospect area was first drilled in 1964 by Claims Beckett, ICON Syndicate, with a 5 drill holes campaign which returned encouraging Au-Cu-Ag results. In 1986, two drill holes were completed by Kerr Addison Exploration Inc. Available assays in assessment report logs have been reviewed and summarized in Table 6-3. The Author's has made no effort to scrutinize this data, or check the QAQC protocols completed during these drill programs, and is presenting this data for reference purposes only.

Table 6-3: Selected drill results from the Lac La Fourche prospect area.

				Au		Ag		
HOLE ID	From (m)	To (m)	Interval (m)	(ppm)	Cu (%)	(ppm)	Notes	
FL-2	26.09	26.70	0.61	10.11	0.15	28.46		
							25% of interval	
and	67.36	78.94	11.58	0.72	0.03	2.44	sampled	
incl.	69.98	70.29	0.31	10.29	0.20	8.91		
							25% of interval	
FL-3	29.57	35.05	5.48	0.72	0.06	1.87	sampled	
incl.	31.33	32.00	0.67	4.80	0.15	8.57		
KN86-18	110.34	118.57	8.23	1.26	0.22	0.56		

7.0 GEOLOGICAL SETTING AND MINERALIZATION

7.1 REGIONAL GEOLOGY

7.1.1 OPATICA SUB-PROVINCE

The Frotet property is located within the Opatica sub-province of the Superior Province, in the eastern sector of Frotet-Evans greenstone belt (Gosselin, 1996) (Figure 7-1). The Opatica sub-province contains

granitoid-gneissic rocks with U-Pb zircon ages from 2833 – 2702 Ma (Davis et al., 1995), intrusive rocks were formed between 2.82 Ga and 2.68 Ga (Davis et al., 1995) and supracrustal rocks in the Frotet-Evans greenstone belt with ages of 2793 – 2755 MA (Pilote et al, 1997) which contrasts with the younger supracrustal rocks of the Abitibi sub-province to the south. The geology of the Frotet-Troilus segment is dominated by alternating sequences of calc-alkaline to tholeitic volcanic rocks similar to other greenstone belts in the Superior province. The belt has been subdivided into four distinct segments from west to east: a) Evans-Ouagama; b) Storm-Evans; c) Assinica; d) Frotet-Troilus. Lithoprobe, a tectonic framework study undertaken by the Geological Survey of Canada in the 1990's outlined a north-dipping reflector below the Opatica sub-province which has been interpreted as a fossilized south-verging subduction zone (Calvert et al., 1995).

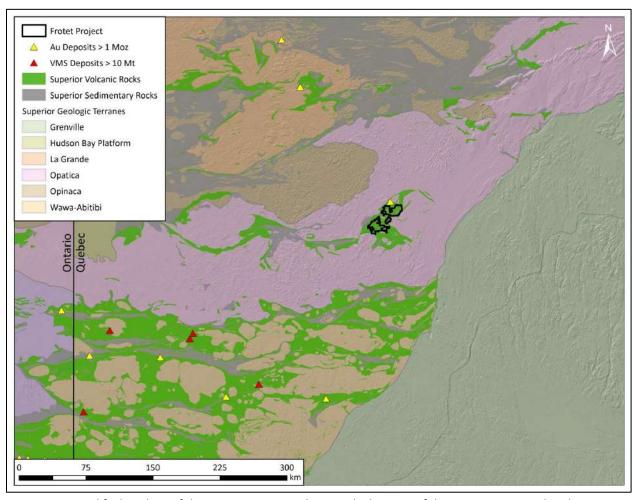


Figure 7-1: Simplified geology of the Superior Provinceshowing the location of the Frotet project within the Opatica sub-province.

Clastic sedimentary rocks along with polymictic conglomerates are mapped through the Storm-Evans and Assinica segments of the Frotet-Evans Greenstone belt. These are interpreted to be equivalent to the Porcupine Group clastic sediments and Timiskaming type polymictic conglomerates found within the Atibiti greenstone belt, marking major crustal scale structures. These sedimentary basins marking the

major structural features (long lived, generally deep seated fault systems) are believed to be the first order control to the majority of orogenic gold deposits within the Abitibi sub-province.

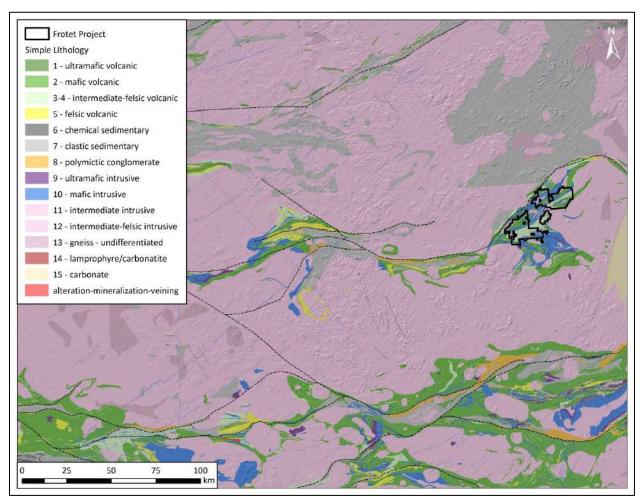


Figure 7-2: Geologic map of the Frotet-Evans greenstone belt. The Frotet project is located in the eastern Frotet-Troilus segment of the belt.

7.1.2 REGIONAL STRATIGRAPHY

Previous regional mapping work within the Frotet-Troilus segment established the volcano-sedimentary stratigraphy of the Archean Troilus Group (Simard, 1987; Gosselin, 1996). Lithogeochemical analyses are critical for characterization of the stratigraphy, because of the complex metamorphic and structural setting of Archean rocks, and the abundance of mafic and intermediate units with similar composition across the belt which cannot be distinguished based on macroscopic properties. Simard (1987) originally described six formations as part of the Troilus Group. In stratigraphic order, they are the Odon, Frotet, Crochet, Testard, Mésière, and Habitation formations. In addition, three volcano-sedimentary complexes were described in the southern part of the area: Domergue north, Domergue south, and De Maurès (Simard, 1987). Gosselin (1996) re-evaluated the Crochet, Testard and Habitation formations as members, and integrated the three volcanic complexes to the south to the Troilus Group (Figure 7-6; Table 7.1).

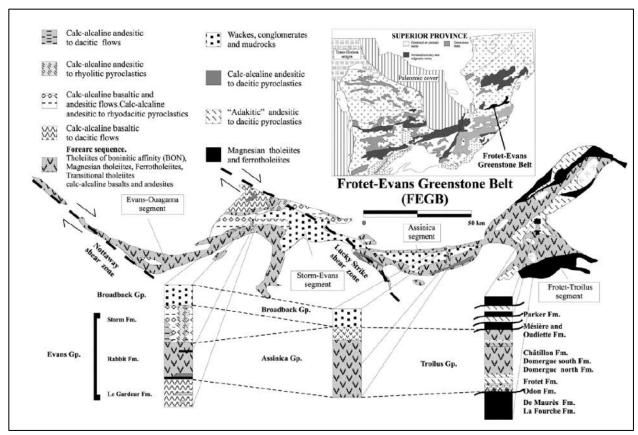


Figure 7-3: Location and chemostratigraphy of the Frotet-Evans greenstone belt. Adapted from Baily and Dion, 2002

As a result, the stratigraphic framework for the Troilus Group reflects compositional and textural changes vertically but also spatially, with significantly different stratigraphy in the north (Cressida, Troilus and La Fourche map areas) and the south (Chatillon and Frotet map areas). The stratigraphic succession in the north includes the Odon, Frotet, La Fourche, Chatillon, Parker and Mesiere formations (Figures 7-4 and 7-5; Table 7.1). In the south, the former volcanic complexes are divided into the Dompierre, Frotet, De Maurès, Domergue south, Domergue north, Crabe and Oudlette formations (Figures 7-4 and 7-5; Table 7.1).

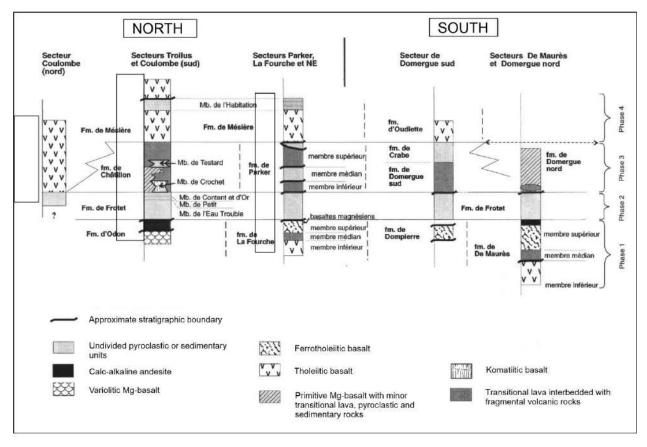


Figure 7-4: Stratigraphic relationships within formations and members of the Troilus Group after Gosselin (1996).

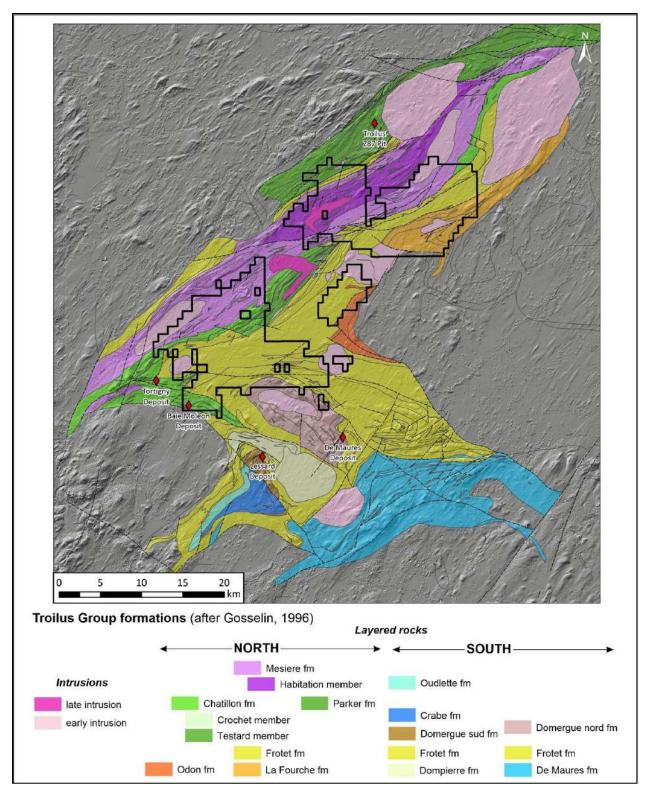


Figure 7-5: Distribution and stratigraphy of the Troilus Group formations as defined by Gosselin (1996).

Table 7-1: Regional stratigraphy of the Troilus Group within the Frotet-Troilus segment after Gosselin (1996).

		NORTH		SOUTH				
Coulombe	Troilus/Coul	ombe	La Fourche		Domergue sud		Domergue nord	
		Mesiere fm	:		Oudlette fm			
	Massive to pillowed basalt; lesser felsic to intermediate tuff, crystal tuff, lapilli and blocka nd ash tuff, argillite, chert, polymictic breccia	Tholeiitic basalt Zr/Y = 3 ; primitive to evolved			pillowed to banded basalt,	tholeiitic affinity Zr/Y = 3; intermediate differenciation level		
	Basal level	primitive basalt						
	Chatillon fm* = transitional lavas		Parker fm* = elevated metamorphism (lower amphibolite)		Crabe fm		Domergue nord fm	
	komatiitic basalt, pillowed to massive basalt, pillowed basalt breccia and flow breccia	Transitional basalt Zr/Y = 4	Pillowed to brecciated basalt and andesite; local garnet horizons; felsic to intermediate tuff horizons (up to 100 m thick)	Transitional Zr/Y = 4.4 ; intermediate to evolved	Sedimentary rocks: sandstone, sil iron sulfur	tary rocks: sandstone, siltstone, pgraphitic argillite rich in ur		
	Basalt, tuff, sedimentary rocks Tholeiitic basalt		Volcaniclastic strata		Domergue sud fm			Mg basalt; tholeiitic serie; primitive lavas Zr/Y < 3
			Banded gabbro and basalt; intermediate to felsic volcaniclastic horizons	Transitional Zr/Y = 4.4 ; primitive differenciation	Massive to variolitic basalt; pillowed andesite; crystal tuff and block and ash tuff	transitional lava Zr/Y = 4.4 ; primitive Mg basalt, intermediate to evolved andesite	sedimentary and pyroclastic rocks	primitive lavas Zry Y < 3
			Frot Dominated by block and ash tuff, less	et fm* = Calc-alkaline pyroclastic de er crystal tuff, leucocratic tuffs and s		: lava	<mark>БІОСК апи asırturr witir qz-</mark> ріа	g amyguaioiuai anuesitiic
	block and ash tuff with felsic porphyritic blocks		block and ash tuff with felsic porphyritic blocks + clac-alkaline andesite blocks with chl or amphibole amygdules		Crystal tuff and lapilli tuffs with common sedimentary structures; lesser block and ash tuff		clasts, tuff with gabbro, rhyolite or fuchsite-rich felsic clasts. Lava clasts chemically identical to andesite from	
	Odon fm		La Fourche fm*		Dompierre fm		De Maures fm	
Variolitic to pillowed Mg basalt			Amphibole-rich lavas including massive, pillowed or flow banded basalt, with local qz-carbonate amygdules	Evolved ferrothoiitic basalt with qz carbonate amygdules	-Pillowed and massive basalt; minor tuff intermediate to felsic	farrotholojitas	Massive and pillowed basalt, qz-carbonate amygdules, coarse gabbroic texture; Felsic-interm tuff; lapilli tuff lenses with chert fragments; Minor andesite	Ferrotholeiitic lava Calc-alkaline Zr/Y = 12
Massive basalt; leucocratic tuff			Minor felsic-intermediate tuf interbedded with graphitic argillite	Transitional Zr/Y = 4.4			Andesitic basalt and plag po pillow basalt, minor sedimentary and pyroclastic rocks, qz po	Transitional Zr/Y = 4.4
pillowed andesite	calc-alkaline affini	ty Zr/Y = 7		Intermediate tholeiitic basalt			Pillow and banded basalt	Tholeiitic Zr/Y = 3.3
unucine			thin lense of Mg basalt within a fault zone forming contact between La Fourche and Frotet fm	MgO > 10%				

7.1.3 REGIONAL STRUCTURE

Although the Opatica sub-province contains rocks that are significantly older than the rocks of the Abitibi greenstone belt, the tectonized margin between the terranes suggest that they share a similar deformational, magmatic, and metamorphic history after ~2700 – 2680 Ma during the main phase D2 deformation event that affected both the Opatica and Abitibi sub-provinces (Davis et al., 1995). This suggests that the major east-west trending shear zones found in the Frotet-Evans greenstone belt were likely active during this deformation event and are likely prospective for orogenic gold deposits similar to the Detour Lake deposit. Also, the presence of the Troilus Au-Cu Archean-porphyry deposit (Goodman et al., 2005; Fraser, 1993) prior to peak-metamorphism shows that there was an early, possibly syn-volcanic, mineralization event within the Frotet-Evans greenstone belt indicating that the Frotet-Troilus segment is prospective for other syn-volcanic aged Au-Cu deposits (i.e. Au-rich VMS deposits similar to Bousquet and LaRonde; other intrusion-hosted/Archean porphyry deposits similar to Cote Lake and Troilus).

Sawyer and Benn (1993) identified three principal deformational stages within the Opatica sub-province, which contains the Frotet-Evans greenstone belt (Figure 7-2). The structural history of the eastern part of the Frotet-Evans greenstone belt, in particular the Frotet-Troilus volcanic segment, is dominated by the second stage of deformation D2.

Within the Opatica sub-province, D1 is defined by a penetrative, moderately dipping foliation (S1) that is characterized by stretching lineations oriented west to east, west to southwest, and east to northeast. D1 is interpreted to result from thrusting along west-vergent faults (Sawyer and Benn, 1993) between 2693-2702 Ma (Davis et al., 1995).

D2 developed during a regional period of shortening and east-west translation in a transpressional regime from 2700-2690 Ma (Benn, 1992; Davis et al., 1995). It is the main north-south compressional event in the Opatica sub-province (Davis et al., 1995). Within the Frotet-Troilus area, this event resulted in the well- developed, steeply dipping penetrative foliation across the entire property. Within the Opatica sub- province, D2 is defined by stretching lineations that record south to southeast-vergent thrusting (Sawyer and Benn, 1993).

D3 is defined by subvertical shear zones that are subdivided into sinistral east-northeast trending zones, and dextral east-southeast trending zones. Timing of movement along these large shear zones is poorly constrained with a maximum age of $2686 \pm 4 \, \text{M}$ inferred from a deformed granite along the Nottoway River shear zone (Davis et al., 1995; Boily and Dion, 2002).

7.1.4 REGIONAL METAMORPHIC DOMAINS

The metamorphic grade of the Frotet-Evans belt is generally greenschist facies in the interior regions, and increases to amphibolite facies at the margins and in proximity to contacts with large granitoid intrusions. Maps have been adapted from Fraser et al. (1978) and Simard (1987) for the metamorphic

facies of the of the Frotet-Evans belt. Major E-W trending structures seem to juxtapose two different metamorphic domains at various locations along the belt, suggesting significant vertical displacement along the faults, and favorable depositional environments for orogenic gold deposits.

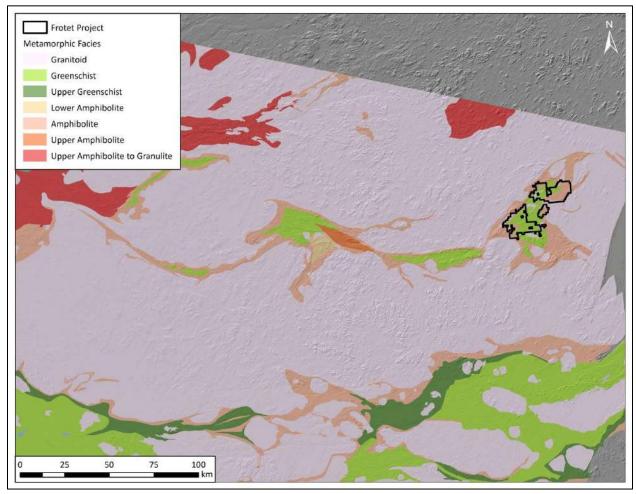


Figure 7-6: Metamorphic map of the Frotet-Evans greenstone belt. Adapted from Fraser et al, 1978 and Simard, 1987.

7.2 LOCAL GEOLOGY

7.2.1 STRATIGRAPHY AND INTRUSIVE ROCKS

The geology of the Frotet-Troilus segment of the Frotet-Evans greenstone belt is dominated by alternating sequences of calc-alkaline to tholeilitic volcanic rocks similar to other greenstone belts in the Superior province. Mafic volcanic rocks consist of pillowed to massive flows and are subdivided into magnesium-rich tholeilites, iron-rich tholeilites, and transitional calc-alkaline to tholeilitic basalts (Gosselin, 1996). Boily et al. (2002) described unique andesites that are similar to modern-day adakites or boninites found in fore-arc rift sequences in Phanerozoic arcs. A large intermediate to felsic package of rocks cores the Frotet-Troilus segment of the greenstone belt, referred to as the Frotet formation by

Gosselin, 1996, which is composed of calc-alkaline block-rich, lapilli, and crystal tuffs, as well as interbedded sedimentary and epiclastic rocks.

The volcanic rocks have been intruded by syn-volcanic intrusions (granite, tonalite, granodiorite-monzodiorite) to post-deformational intrusions (tonalite) (*Figure 7-7*). Boulder prospecting and drilling completed 2019-2020 in the Regnault target area has identified an syn-volcanic intrusive complex with general intermediate to mafic composition (diorite-tonalite-gabbro-intrusive breccias) which has many macroscopic features similar to the intrusive complex which hosts the Troilus gold deposit. Field characteristics of mapped units are detailed in Table 7-2, and illustrated by a field photographs gallery (Figure 7-8. Geochemical signatures are described and interpreted in section 7.2.2 of this report, but results of these analyses that support unit descriptions are also compiled in Table 7-2.

The majority of the Frotet property is located within the northern domain of the Frotet-Troilus segment, as defined by the fold axis of the major Frotet anticline (Gosselin, 1996). The northern part of the Frotet property is dominated by gabbro, quartz diorite, and tholeiitic basalt with various geochemical signatures, and lesser intermediate fragmental volcanic units. The Cressida and Troilus areas in the northwestern portion of the property are dominantly underlain by coherent mafic to intermediate volcanic rocks bounding a 4-km wide SW-NE belt of gabbro and diorite with a tonalite core, the Troilus syncline (*Simard*, 1987). To the east, the La Fourche area is characterized by a SW-NE-trending regional structure well-defined in the field by several competent metre-wide quartz veins. This structural boundary marks the contact between gabbro, blue quartz-phyric diorite and coherent basalt to the north, with a 2 km-wide corridor of intermediate volcanic rocks, lapilli breccia and tuffaceous units to the south (*Figure 7.7*). Further south, another structure marks the transition from intermediate fragmental rocks into gabbro and high-Ti-Fe tholeiites (*Figure 7-7*).

The southern portion of the Frotet property is underlain by the core of the Frotet anticline, with intermediate to felsic volcaniclasitic rocks making up the core of the fold. These volcaniclastic rocks cover a wide spectrum of textures and compositions; polymictic and monomictic, matrix- to clast-supported ash tuff, lapilli to breccia, and coherent andesitic flows. On the northern fold limb of the Frotet anticline, gabbros inter layered with intermediate andesitic flows grade outwards to large coherent basalt flows which trend SW-NE through the center of the Frotet-Troilus belt (Figure 7-7). To the east of Lac Frotet, intermediate fragmental units are interbedded or cross cut by blue-quartz-phyric diorite and gabbro. To the southeast of Lac Frotet, units are again dominated by interbedded basalt and gabbro unit. Several early, probably syn-volcanic felsic to intermediate intrusions are located along and E-W in close proximity to the southern boundary of the Frotet property. Most notably is the Regnault intrusive complex characterized by blue quartz-phyric diorite-granodiorite, tonalite, gabbro and intrusive breccias located along the margins of the complex. These rock range from fine to coarse grained, and equigranular to porphyritic. A major E-W fault has dissected the Frotet anticline which follows the margins of Lac Frotet.

Lithogeochemsitry sampling by Inco in 1991 – 1993 (GM 53343) indicate that the felsic volcanics have FI signatures based on the rhyolite fertility classification of Lesher, et al. (1986), which were interpreted to have less prospectivity for VMS mineralization. However, subsequent research has illustrated that FI

volcanics are more prospective for Au-rich VMS deposits (Gaboury, 2008, Mercier-Langevin et al., 2007; Pelletier, 2016). Fl volcanics are strongly fractionated with high La/Yb ratios, low high-field strength element content, variable Eu/Eu* anomalies, which suggest they were erupted through thicker crust and not in a typical thin crust rift setting. Hannington et al., 1999 also shows that the depth of the water column plays a role in gold enrichment of VMS deposits due to phase separation of the hydrothermal fluid and that this deposit class is essentially a sub-aqueous high sulphidation epithermal system. The presence of Fl volcanics in the Frotet-Evans belt in conjunction with the syn-volcanic aged Troilus porphyry Au-Cu deposit indicates excellent prospectivity for addition porphyry, and / or Au-rich VMS deposits in the area.

The structural grain across the Frotet property is generally SW-NE. In the southern part of the property along the eastern part of Frotet Lake, there is a bend of the structural orientations to EW (Figure 7-7). All rocks are polydeformed and folded. The folding is inferred in the field from variable measurements of shallowly-plunging hinges and foliation, however folding geometry is largely interpreted from magnetometry.

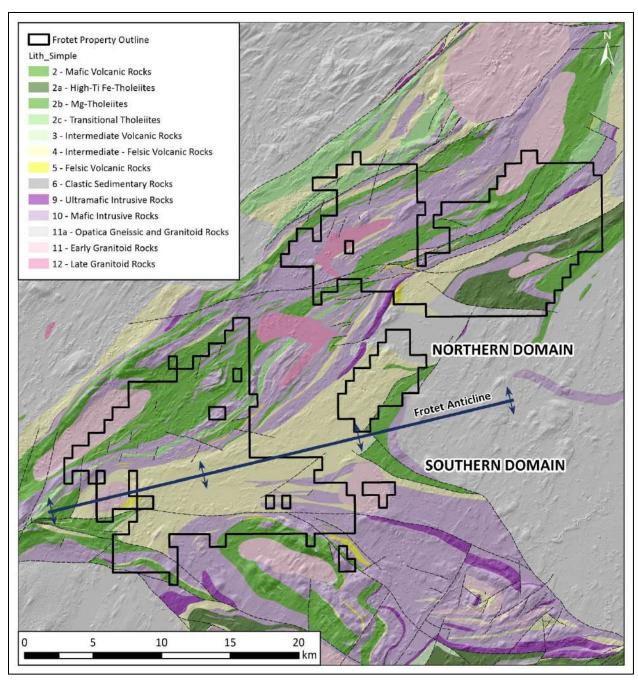


Figure 7-7: Regional geology of the Frotet-Troilus segment, after SIGEOM regional mapping. Regional units correspond to broad compositional groups that were used to build the 2019 property scale target area maps.

Table 7-2: (next pages) - Descriptions of field units underlying the Frotet property. Stratigraphic association are based on the description and spatial distribution of the Troilus Group formations defined by Gosselin (1996).

Unit Code	Description	Spatial distribution or location	Stratigraphic association (after Gosselin, 1996)
2Fb	Basalt, Mg basalt, gabbro. Dark green, aphanitic, fine crystalline basalt. Featureless, massive, with local foliation marked by chl alteration. Non magnetic. Hematite altered.	Entire property	Occurs at different stratigraphic levels and across the whole property within La Fourche and Parker fm (northern domain), and Domergue Nord Fm (southern domain)
2Fc	Basalt, intermediate to felsic tuff. Dark green to brown, finely crystalline aphanitic basalt	Chatillon, Cressida	Upper part of the stratigraphy: Chatillon, Mesiere and Parker fm
2Fa	Aphanitic non magnetic massive to pillowed basalt. Fe-rich tholeiite, banded, pillowed, amphibole phyric. Fe tholeiite, tuff, mudrock.	La Fourche	Lower part of the stratigraphy: La Fourche fm
2B	Dark green mafic with 20% beige intermediate clasts. Mafic breccia? 10-20% fine grained hornblende within matrix. Clasts are flattened and elongated parallel to foliation. Non-magnetic.	Cressida	Parker fm
2P	Pillow Basalt, pale green on fresh surface, fine grained, up to 1 m pillows locally undeformed or moderately flattened, can contain trace diss pyrrhotite	Chatillon	Frotet formation
ЗВіу	Volcanic breccia and tuff breccia, monomictic. Aphanitic dark green matrix, magnetic	Frotet Lake	Frotet formation
3F	Dominated by intermediate volcanics. Flow, minor lapilli and breccia. Grey, fine grained massive andesite, featureless and non magnetic. Very fine grained, dark bright green groundmass, possibly chl altered, intermediate volcanic rock	Entire property	Frotet, Mesiere formations (upper part of the stratigraphy)
3Ley	Polymictic andesitic lapilli ash tuff, non magnetic, resistive plag phenos, chlorite altered	Lake Frotet	Frotet formation
3Liy	Matrix supported intermediate lapilli tuff, ash tuff, tuff breccia, minor andesitic coherent flow. Elongated aphanitic to finely hb phyric clasts, local augite-phyric clasts. Clasts appear as white weathering in a pale green groundmass. Coherent strata is aphanitic to finely plag phyric, non magnetic. Tuffaceous beds have fine crystalline groundmass, non magnetic, with up to 50% plag. Breccia intervals have angular felsic clasts, elongated. Tuff breccia has fine grained chloritic matrix, locally silicified, non magnetic	La Fourche	Frotet formation
3LT	Dark green-brown weathering intermediate lapilli tuff and tuff breccia. Monomict. Pale green fine grained aphanitic chlorite altered groundmass is locally soft, micaceous. Lapilli to block size lense-shaped clasts of hb-plag phyric andesite are matrix supported. Locally some coherent intermediate interbeds.	Dominantly in Frotet and Chatillon Lakes areas. Locally in Troilus Lake area	Dominantly in Frotet formation , locally in Mesiere Fm
3U	Undivided intermediate volcanic and intrusive rocks. Includes pillow basalt, tuff, lapilli, minor fine grained seds	Entire property	Frotet formation
4C	Dark grey, feldspar-quartz crystal andesitic-dacitic tuff. Locally ash content increases. Rare cm-scale beds of dark grey chert. Very faint hints of bedding.	Troilus Lake area	Mesiere fm (Habitation member)
4F	Beige to pale grey. Aphanitic to fine crystalline andesite-dacite. ~20-30% plag. Hornblende and plagioclase crystals are partly chlorite altered. Locally minor mudstone(?)	Troilus Lake area, Chatillon area	Mesiere fm (Habitation member), Frotet Fm
4U	Intermediate-Felsic volcanic and volcaniclastic rock, lapilli-tuff, and fine grained sedimentary rocks including mudstone, minor andesite	Troilus Lake area	Mesiere fm (Habitation member), Frotet Fm
4Te	Heterolithic dacitic (?) to andesitic tuff breccia. Locally matrix or clast supported. Clasts are composed of fine grained andesitic crystal tuff and more rhyolitic siliceous material. The matrix is very chloritic, easily scratched with fingernail on weathered surface.	Chatillon Lake	Mesiere fm

Unit Code	Description	Spatial distribution or location	Stratigraphic association (after Gosselin, 1996)
4Tiz	Monomictic, clast-supported, fine grained, massive, intermediate-felsic tuff breccia	Troilus, Lae Fourche	Mesiere fm, Frotet Fm (upper part of the stratigraphy)
	with rhyolite clasts. Bt present in foliation. Plag phyric. Non magnetic. Interbedded		
	with minor coherent volcanics.		
5F	Pale grey-beige, aphanitic, strongly foliated and hematized dacite or rhyolite. Bands of	Frotet Lake	Frotet formation
	silicified aphanitic rock alternate with bands of chlorite rich rock. Vey fine biotite (2%)		Locally within Mesiere fm at Troilus Lake
	in pale grey aphanitic groundmass. Flow banded rhyolite locally interbedded with rusty		
	brown siderite-carbonate breccia veins. Non magnetic. Carbonate veining and local		
	trace pyrite.		
5U	Lapilli to block tuff, minor seds and basalt; Felsic-intermediate tuff, mudrock	Across the entire property	Frotet formation
7M	Dark grey black featureless argillite	La Fourche	La Fourche (lower part of the stratigraphy)
9U	Ultramafic intrusive: pyroxenite, peridotite	La Fourche, and south of the property	Frotet formation
10G	Green, equigranular to porphyritic fine crystalline gabbro, usually in the form of thick	Gabbro units are one of the dominant	Found across all formations - presumably different events associated
	intervals or sills/dikes. Phenocrysts include plag, hb, lesser px and bt. They are non	intrusive lithologies across the Frotet	with distinct magmatic episodes.
	magnetic to weakly magnetic. Chlorite alteration.	property. Gabbroic intervals are found in	
		every target map area	
10Gx	Coarse crystalline hornblende megacrystic gabbro with rare epidote altered xenoliths.	La Fourche	
	10% px up to cm scale and resistive on weathered surface. crosscut by qz veins up to		
	5cm thick. halo of fine bt chl alteration surrounding veins.		
11Q	White-pink, very fine grained granodiorite. ~40% kspar, 20% plag, 40% qtz. Massive	La Fourche, Chatillon	Early intrusion
	and in contact with mafic basalt.		
11Vx	White, fine grained crystalline felsic intrusive, plag phyric, strongly magnetic. Up to	La Fourche	Early intrusion
	30% qz veining with magnetite blebs and 15% magnetite veining. Moderately foliated.		
	Chlorite and biotite alteration controlled by foliation. Note this is a single truck sized		
	boulder. Chlorite, biotite, silica alteration		
11VY	Tonalite to monzonite. Approx 30% qtz, 60% kspar, 10% plag, local pyroxene. Epidote	La Fourche, Troilus, Cressida	Early intrusion
	alteration.		
12Gqp	Very coarse grained granodiorite. 60% Kpar megacrysts up to 3cm, 25% quartz up up	East Frotet	Late intrusion
	5mm, 10% biotite up to 3mm, 5% plagioclase up to 2-3m, 2-3% hornblende		
13Q	White to grey massive quartz veins up to 10 m wide, associated with minor iron	Vein lenses aligned along a ESE-WNW	The structural feature that is host to these large quartz vein lenses is
	carbonate. Host rock is dark green, fine grained, foliated mafic volcanic or	structural boundary in the La Fourche area	also recognized as a major stratigraphic boundary between tholeiitic
	volcaniclastic unit, also occurs as xenoliths within the quartz veins. Chlorite alteration		basalts of the Mesiere fm to the north and older volcaniclastic units
	pervasive in the host rock. Epidote alteration present as halos at the quartz vein		of the Frotet fm to the south.
	boundary.		
15Dpq	Massive intervals of blue quartz diorite. Very distinctive unit characterized by the	Mainly in La Fourche and east Lac Frotet	The blue quartz diorite occurs in the upper part of the stratigraphy,
	presence of 1-10% fine blue quartz crystals (up to 20%) in a dark grey to black	areas. Minor occurrences also mapped in	principally within the Frotet formation, but also locally within the
	equigranular, coarse to medium grained mafic groundmass. The groundmass is locally	the Lac Troilus area	Mesiere and Chatillon formations. Quartz phenocrysts were
	characterized by hb, plag or biotite phenocrsyst. The unit occurs as interbeds or lenses		previously interpreted as the result of metamorphism (Simard, 1987),
	within fine to coarse grained gabbro units and is moderately magnetic.		and therefore there is a possibility that the blue quartz diorite unit
			represents a slightly differently metamorphosed version than the
			gabbro unit 10G.

FRAGMENTAL VOLCANIC UNITS (FROTET FORMATION)

Unit 3Tyo (3LT), Chatillon area

Pale beige green, massive, matrix supported plagioclasephyric andesitic breccia. Clasts are up to 15cm, subangular, with alteration halo. Rock is pervasively sericite altered, and also contains veinlets of paragonite (pale apple green), and few pods of fuchsite. Clasts are locally hematized. Pyrite is disseminated, associated with pods of dark green chlorite veinlets.

Unit 3Ty, Lake Frotet/Regnault area

Tan to brown weathered, grey green, matrix supported volcanic lapilli tuff to breccia. Green weakly chlorite altered groundmass, aphanitic, with finely crystalline plagioclase, hornblende, biotite. Clasts are rounded and flattened. Rock is silicified, and locally intersected by 10cm wide deformed quartz vein with a sugary crystal texture with hematized alteration halo.

Unit 3Ty, Lake Frotet/Regnault area

Foliated, intermediate tuff breccia with elongated clasts up to 10 cm, fine grained biotite hornblende-rich groundmass, with remnant plagioclase crystals. Silicification is pervasive and chlorite alteration occurs as bands.

Unit 4Biy, Lake Frotet area

Monomictic, matrix supported volcanic breccia. White weathering massive groundmass and more recessive dark green, chlorite-rich clasts up to 25 cm across. Clasts have a hornblende dominated groundmass, hornblende phenocrysts up to 15%.

Figure 7-8: Field photographs of the main lithologies underlying the Frotet property.

FRAGMENTAL VOLCANIC UNITS (cont'd)

Unit 3Bez, La Fourche area boulder or subcrop. massive, with flattened clasts up to

15cm, clast supported. overall composition is intermediate, but there are two clasts compositions: white weathered, white hb phyric felsic clasts, and dark green, plag phyric andesite clasts. chl altered groundmass. disseminated pyrite associated with qz veinlets

Unit 4Tiz, La Fourche area

light grey, fine grained, andesite-dacite tuff breccia, strongly-intensely foliated, up to 10% of outcrop contains rhyolitic clasts that are intensely flattened with plunges to 79 deg. the matrix is siliceous with linear bt within the foliation. locally up to 0.5-1% py along the foliation planes, predom py is fine grained but can be cubic.

Figure 7-8 (cont'd): Field photographs of the main lithologies underlying the Frotet property.

BASALT UNITS Pillowed basalt, Chatillon area (Unit 2P/2F) Unit 2Ba (2F) Cressida area Dark green basalt displaying strongly amphibole altered matrix containing possible rhyolite clasts. Pervasive Soft white clayish material represents former pillow interstitial material foliation. The mafic matrix is locally intensely altered to fibrous actinolite up to 5mm. Volcanic breccia (3Biy) within coherent mafic unit, N Unit 2Pf, Roadside area Chatillon area Pillowed basalt, with rounded and unflattened pillow Pale green to rusty weathered, brecciated intermediate structures up to 1m. Fresh rock is pale green finely aphanitic volcanic rock. Intact rock clasts display pillow-like geometry, therefore this unit may correspond to a brecciated crystalline, with trace disseminated pyrrhotite. andesitic pillowed interval.

Figure 7-8 (cont'd): Field photographs of the main lithologies underlying the Frotet property.

GABBRO UNITS Megacrystic Gabbro, Troilus area (10G) Indurated, megacrystic porphyritic gabbro displaying large Xenolithic Gabbro, La Fourche area (10Gx) Coarse crystalline hornblende megacrystic gabbro with rare epidote altered xenoliths. crystals of hornblende up to 1cm. **DIORITE UNITS** Unit 10Gpu, N Chatillon area Pale green altered, pyroxene phyric gabbro. Up to 30% px in a pale green aphanitic groundmass. Unit 15Dpq (Lake Frotet area) Up to 2-3% blue quartz in a gabbroic groundmass (right) Unit 15Dpq (Lake Frotet area) Coarse crystalline quartz diorite with distinctive blue quartz eyes around 10-15%. Quartz content increases up to 35% along a higher strain zone oriented N250 (parallel to foliation), and also associated with up to 5% pyrite.

Figure 7-8 (cont'd): Field photographs of the main lithologies underlying the Frotet property

Coherent felsic volcanic flow, Troilus area (5F)

Tan to grey weathering, pale grey flow banded to laminated quartz phyric (3-5%) rhyolite. Non magnetic, highly silicified. Fracture surfaces locally hematized with trace pyrite along altered plane.

SEDIMENTARY UNITS

Unit 5Aoq, Troilus Lake area
Thinly bedded mudstone interbedded with ash tuff. Rusty
patches typically have 0.5-2%, 1-2cm long rounded clasts
of massive sulphides.

Unit 7Mt, Cressida area
Thin medium bedded dark grey laminated mudstone, weakly
magnetic. Fine blue quartz eyes (1%), and biotite (1%)
suggest this unit could be a mafic ash tuff.

Figure 7-8 (cont'd): Field photographs of the main lithologies underlying the Frotet property

GRANITOID INTRUSIONS Unit 12Gqp, Lake Frotet area Unit 11ouv (11VQ), Troilus Lake area Very coarse grained granodiorite Porphyritic tonalite **QUARTZ VEIN ULTRAMAFIC ROCKS** Ultramafic intrusive rocks (9U), Troilus area Characteristic brown weathering, dark to pale green, aphanitic, highly magnetic ultramafic rock, with magnetite vein stockwork throughout. Forms massive outcrops crosscut by multiple anastomosing veinlets. Quartz vein unit, La Fourche area (13Q) White to grey 7-10 m wide massive quartz vein with minor Fe carbonate. Hosted in intensely sheared and Fe carbonate altered gabbro or mafic volcanic unit.

Figure 7-8 (end): Field photographs of the main lithologies underlying the Frotet property

7.2.2 GEOCHEMICAL COMPOSITIONS

Volcanic rocks

Volcanic rocks on the Frotet property are dominated by pillowed and flow-banded coherent basalts of the Chatillon and Mesiere formations, as well as widespread intermediate fragmental volcanic rocks of the Frotet formation.

Composition of the sampled units were determined from analytical data using the immobile element plots of Nb/Y vs Zr/Ti (*Pearce 1996; Figure 7-9a*). Volcanic rock compositions are dominated by subalkaline basalt and basaltic-andesite (*Figure 7-9a*, b). Intermediate compositions in the fields of andesite and dacite were also recorded, but some of the most felsic compositions may be the result of alteration. Most mafic volcanic rocks on the Frotet property have a tholeiitic affinity, with a high FeO/MgO ratio (*Figure 7-9c*). Most intermediate and felsic rocks, and some of the mafic units, have a calc-alkaline affinity (*Figure 7-9c*).

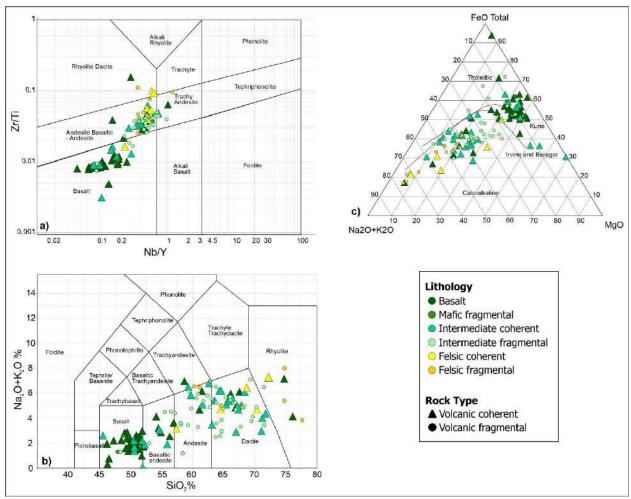


Figure 7-9: Classification diagrams for volcanic rocks of the Frotet property a) Nb/Y vs Zr/Ti (after Pearce 1996); b) TAS diagram (after Le Bas et al., 1986); c) AFM diagram (after Irvine and Baragar, 1971).

Major elements XY diagrams for volcanic rocks of the Frotet property also illustrate distinct compositional groups (*Figure 7-10*). Coherent mafic volcanic rocks have elevated compositions of Fe_2O_3 (over 10%), MnO (over 0.16%), MgO (over 5%), whereas intermediate coherent and fragmental lithologies are characterized by lower compositions for all these elements. Compositions of Al_2O_3 are similar across all units (13-17% in average), but slightly higher for intermediate compositions (over 15%).

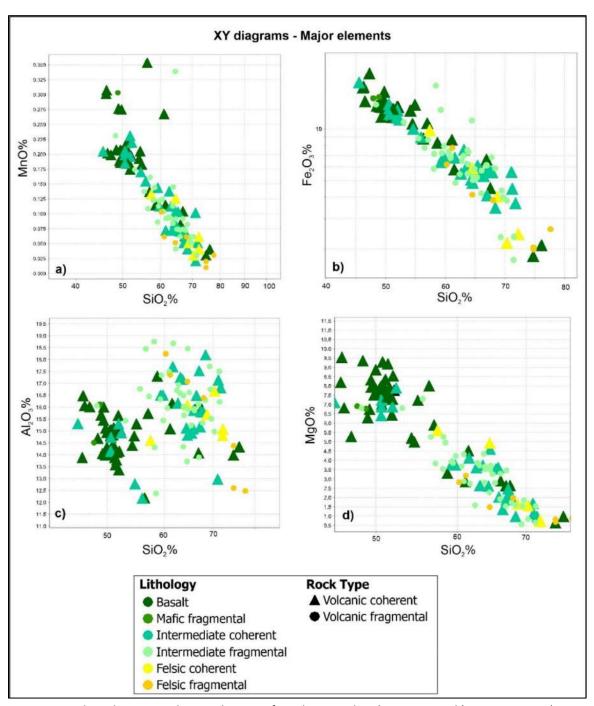


Figure 7-10: Selected XY major element diagrams for volcanic rocks: a) SiO_2 vs MnO b) SiO_2 vs Fe_2O_3 ; c) SiO_2 vs Al_2O_3 ; b) SiO_2 vs MgO.

Trace elements and REE spider diagrams for volcanic rocks of the Frotet property also support the idea that the mafic units can be separated into at least two compositional groups. REE plots indicate that most of the intermediate and felsic units, but also some of the basalts, display fractionation of the LREE versus the HREE when plotted against a MORB norm (*Figure 7-11*). The most juvenile, undifferentiated basalts, display a relatively flat profile with respect to MORB composition (*Figure 7-11*).

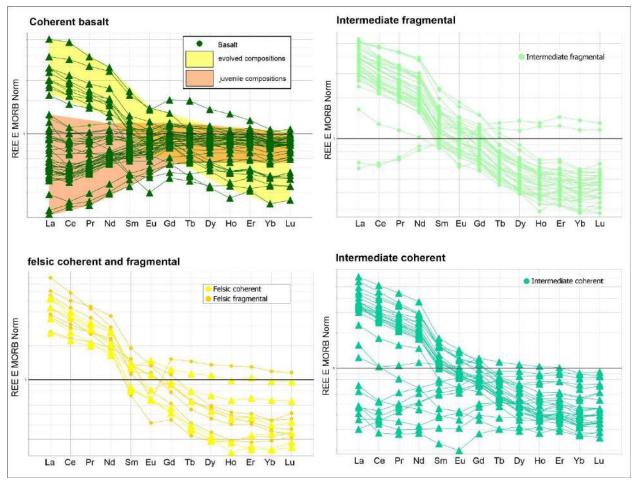


Figure 7-11: REE spider diagram plot against an E MORB norm after Sun and McDonough (1989).

Intrusive rocks

Intrusive rocks on the Frotet property include syn-volcanic gabbro and diorite of the Frotet formation, as well as several phases of syn- to post-volcanic granitoids. All intrusive rocks display a subalkaline composition (*Figure 7-12*), similar to the trend displayed by volcanic units. Compositions are dominated by gabbro (*unit 10G; Table 7-2*) and gabbroic diorite (units 10G and 15Dpq; *Table 7-2*). The blue quartz diorite unit displays a slightly different composition than most gabbro units, however the SiO₂ enrichment is likely due to the presence of metamorphic quartz phenocrysts in these units. Compositionally, some of the gabbros plot in the granodiorite field, but this could be due to alteration. Granitoid units display a granitic composition (*Figure 7-12a*). With trends analogous to those observed in volcanic rocks, the Y vs Zr diagram illustrates distinct composition groups within intrusive units of the

Frotet property (*Figure 7-12b*). Granitoids have the highest Zr/Y ratio > 20. A small group of gabbro and diorite display a Zr/Y $^{\sim}10$. The main group of gabbro, diorite and ultramafic rocks display a lower ratio Zr/Y $^{\sim}2.5$ to 3.

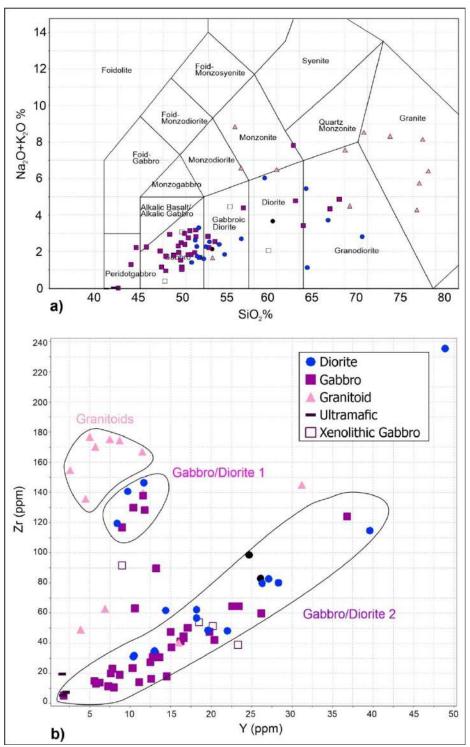


Figure 7-12: Composition of intrusive rocks of the Frotet property: a) TAS diagram for plutonic rocks (Middlemost, 1994), and b) Y vs Zr diagram illustrating three distinct groups of intrusive compositions.

Trace element and REE spider diagrams for granitoid rocks of the Frotet property display a sloped profile with respect to a primitive mantle norm, with HREE enriched with respect to LREE (*Figure 7-13a*). This indicates differentiated magmas, consistent with a crustal source. Most gabbro and diorite units display a relatively flat REE profile, indicated little differentiation with respect to primitive mantle compositions; however, there is a distinct group of gabbro and diorite samples that display an evolved composition with higher concentration in HREE (*Figure 7-13b-c*). Ultramafic rocks display a significantly distinct REE profile, depleted in REE compared to granites and gabbros, and with a strong negative Eu anomaly (*Figure 7-13d*).

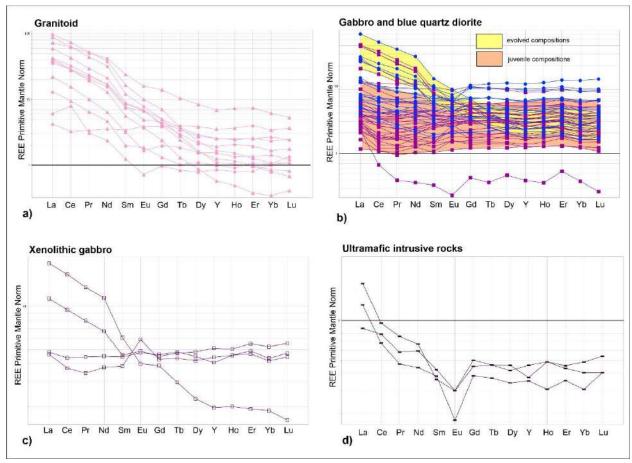


Figure 7-13: REE spider diagrams with respect to a primitive mantle norm, after Sun and McDonough (1989). These diagrams highlight different fractionation trends for the different units, corresponding to different levels of differentiation from primitive to evolved. a) Granitoid (units 11 and 12); b) Gabbro (10G) and blue quartz diorite (15Dpq) with two distinct composition trends; c) Xenolithic gabbro (10Gx); d) Ultramafic intrusive rocks (9U).

7.2.3 TECTONIC AFFINITY AND STRATIGRAPHIC CORRELATIONS

Volcanic rocks

According to Gosselin (1996), there are at least three geochemically distinct basalt units underlying the Frotet property: magnesium-rich tholeiites, iron-rich tholeiites, and transitional calc-alkaline to tholeiitic basalts (Gosselin, 1996). These basalt units are visually very similar and cannot be distinguished in the

field solely based on mineralogy or texture. Lithogeochemistry provides a valuable dataset to characterize and distinguish these different basalt units. Trace elements diagrams for volcanic rocks suggest that distinct compositional groups are the result of evolution in a range of magmatic environments.

Zr vs Y diagram (*Figure 7-14*) shows two very distinct trends of compositions between the intermediate ($Zr/Y \sim 16$) and mafic units. Within the mafic units, 2 subtrends can also be distinguished ($Zr/Y \sim 2.3$ and $Zr/Y \sim 3.4$).

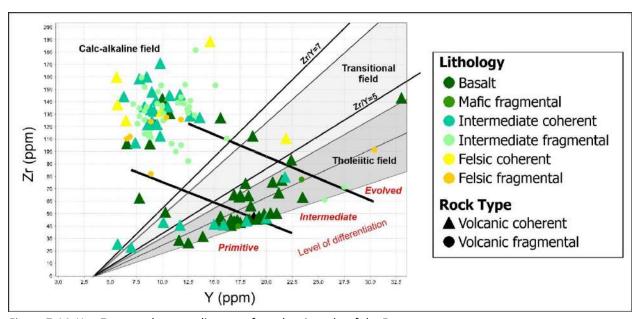


Figure 7-14: Y vs Zr trace elements diagrams for volcanic rocks of the Frotet property.

Ti vs Zr diagram after Pearce and Cann (1973) shows that most basalt units correspond to a mix of magma sources between MORB and IAT, whereas most intermediate compositions units are defined as calc-alkali arc basalts resulting from crustal differentiation (*Figure 7-15a*). Ternary diagrams by Wood (1980) further help with distinguishing different tectonic settings for the magmas that generated these rocks (*Figure 7-15b*).

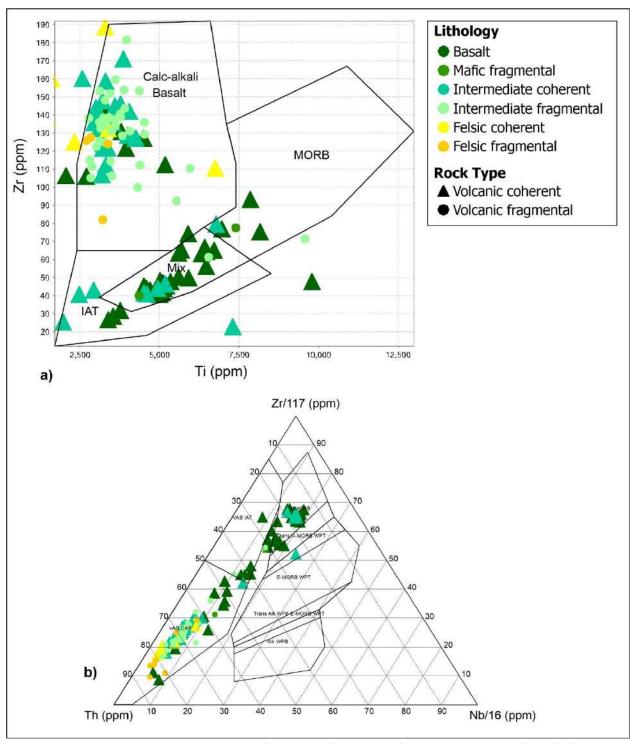


Figure 7-15: Tectonic discrimination diagram for basalts a) Ti vs Zr after Pearce and Cann (1973); b) Th-Zr-Nb diagram after Wood (1980)

Plutonic rocks

Plutonic rocks underlying the Frotet property all display an arc magmatic composition (*Figure 7-16a*). Within these magmatic arc intrusive rocks, several subtrends can be identified. Most gabbro and diorite units display back arc to arc tholeiite affinities, indicating that they were sourced from relatively undifferentiated, juvenile mafic magmas (*Figure 7-16b*). A few samples plot in the field of arc transitional magmas. Several gabbro and diorite samples appear to be more differentiated with arc calcalkaline affinities (*Figure 7-16b*). All granitoid rocks display an arc calcalkaline affinity. Trace elements plots (*Figure 7-16c,d*) can help further delineate the distinct compositional trends within mafic intrusive rocks, and highlight a group of gabbro and diorite with calcalkaline affinity distinct from the main trend of gabbroic rocks.

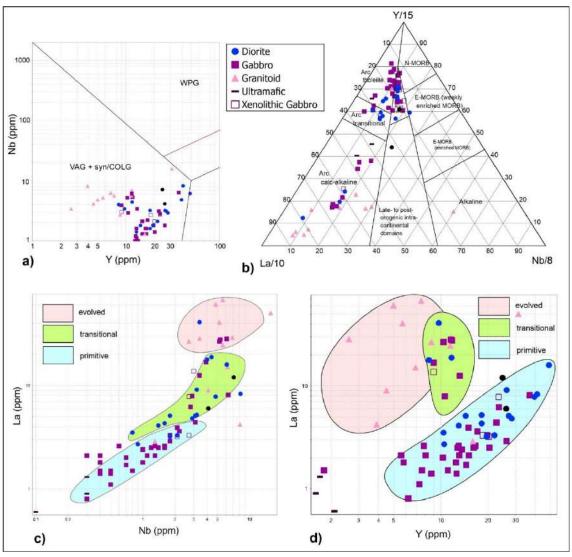


Figure 7-16: Tectonic discrimination diagrams for intrusive rocks of the Frotet property a) Nb vs Y diagram for granites after Pearce et al. (1984); b) Tectonic classification of mafic igneous rocks after Cabanis and Lecolle (1989); c) Nb vs La diagram showing three different compositional trends for intrusive rocks; d) Y vs La diagram showing three different composition trends for intrusive rocks.

Stratigraphic correlations

Both the Frotet and Mesiere formation display a wide range of rock composition and tectonic affinities, with juvenile to transitional basalt and gabbros, as well as intermediate and felsic calc-alkaline units (*Figure 7-17a*, b). The most juvenile basalts have a MORB signature and likely result from back arc or oceanic ridge magmatism. These basalts dominantly belong to the Mesiere formation and are less extensive within the Frotet formation. These rocks display a relatively flat REE profile, locally slightly depleted in LREE (*Figure 7-17a*).

Arc transitional tholeitic basalts and gabbro units of the Frotet, Chatillon and Mesiere formations were likely formed in a more evolved island arc environment (*Figure 7-17a*, b). They are slightly depleted in LREE with respect to MORB compositions, but their HREE values are similar to MORB (*Figure 7-17a*). Ultramafic rocks of the Frotet formation (exposed in the Troilus anomalous area) are strongly depleted in REE with respect to MORB composition and display a strong negative Eu anomaly (*Figure 7-17a*). The Parker formation (exposed in the Cressida area) is distinguished by gabbro and basalt with calcalkaline affinities, which show variable fractionation profiles of their REE compositions with respect to MORB. In contrast, calc-alkaline units at other stratigraphic levels are characterized by intermediate to felsic lithologies with highly fractionated REE profiles (*Figure 7-17a*).

The most calc-alkaline, differentiated compositions are represented by intermediate and felsic coherent and fragmental units of the Frotet and Mesiere formations, and are widespread across the entire property. These rocks display a fractionated REE profile, with enrichment of LREE versus HREE (*Figure 7-17a*).

Gabbro and diorite units of the Mesiere and Chatillon formations (Chatillon and Troilus map areas) display MORB to transitional affinities (*Figure 7-18*), indicating that they were sourced from relatively undifferentiated, juvenile mafic magmas in back arc to juvenile arc environments. On the other hand, gabbro and diorite units part of the Frotet formation (La Fourche, Frotet and Regnault areas) display a calc-alkaline signature (*Figure 7-18*), indicating a higher level of differentiation of the magmas in a volcanic arc environment.

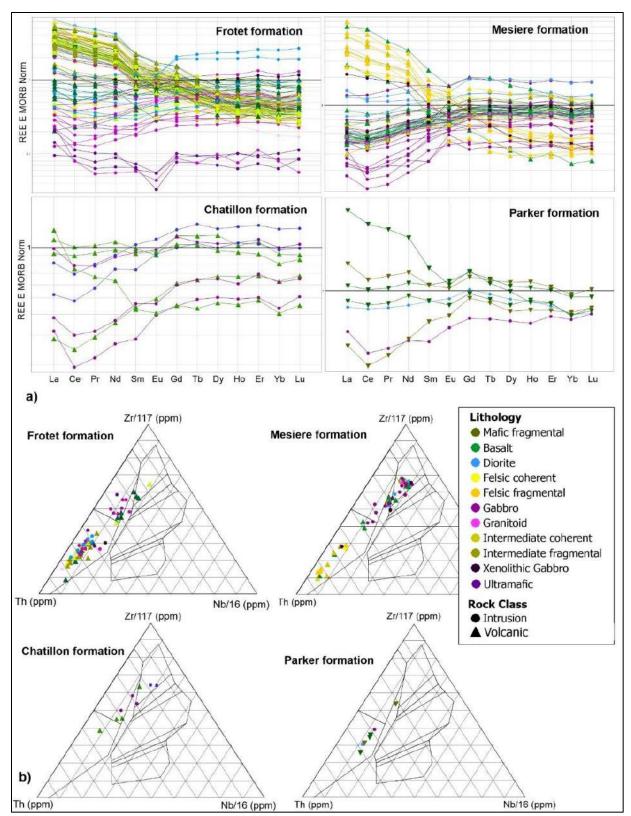


Figure 7-17: Compositions and tectonic affinity for units of the Frotet, Mesiere, Chatillon and Parker formations. a) REE profile (after Sun and McDonough, 1989); b) Tectonic discrimination diagram (after Wood, 1980).

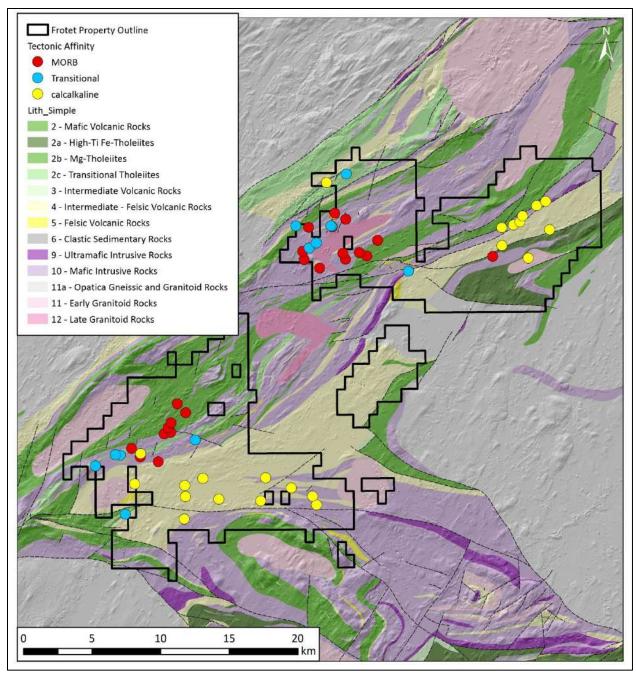


Figure 7-18: Tectonic affinity of gabbro (10G) and blue quartz diorite (15Dpq) units across the Frotet property, based on Th-Zr-Nb diagram by Wood (1989).

7.2.4 STRUCTURAL GEOLOGY

The volcanic rocks of the belt have a well-developed steeply dipping penetrative foliation that is locally partitioned into intensely deformed shear zones. Gosselin, 1996, separates the Frotet-Troilus segment into two structural domains: a) the North Domain, and b) the South Domain, with main features being: 1) the Troilus syncline, 2) a dextral strike-slip fault around Lac la Fourche and 3) Dionne, and 4) thrust faults around the Parker pluton (Figure 7-19). The Troilus syncline is attributed to D₁, which is

characterized by NE-trending folds and fabrics, and later D₂ -related E-W to E-NE-trending isoclinal folds and shear zones represented by the Lac La Fourche and Dionne fault systems (Figure 7-19). Gosselin, 1996, infers from magnetic data that displacement on the La Fourche shear zone is dextral strike-slip, although due to a lack of mapped lineations the kinematics are not well defined. Sub-horizontal stretching lineations have been noted on the Dionne fault zone. On the Parker thrust fault, a steep NE-plunging stretching lineation has been noted suggesting dip-slip movement.

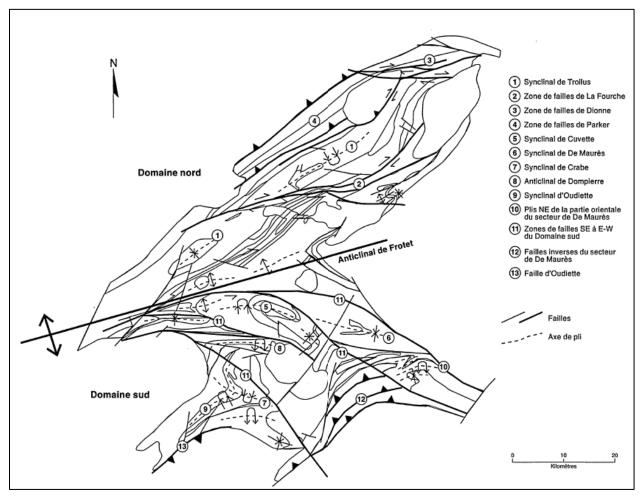


Figure 7-19: Structural geology and structural domains of the Frotet-Troilus segment of the Frotet Evans greenstone belt (Gosselin, 1996).

Within the North Domain, Gosselin (1996) described the following features: 1) the Troilus syncline, 2) a dextral strike-slip fault around Lac la Fourche and 3) Dionne, and 4) thrust faults around the Parker pluton (*Figure 7-19*). The Troilus syncline is attributed to D_1 , which is characterized by NE-trending folds and fabrics, and later D_2 -related E-W to E-NE-trending isoclinal folds and shear zones represented by the La Fourche and Dionne fault systems (*Figure 7-19*; *Gosselin*, 1996). Dextral strike-slip displacement on the La Fourche shear zone are inferred from magnetic data (*Gosselin*, 1996). Sub-horizontal stretching lineations on the Dionne fault zone combined with a steep NE-plunging stretching lineation on the Parker thrust fault, suggest a dip-slip movement (*Gosselin*, 1996).

Gosselin (1996) defined the Southern Domain mainly based on stratigraphic and structural features that included: 1) a particularly more complex structural style than in the north, 2) a general fabric that is oriented ESE, except for in the very south, where it is oriented NE, similar to trends in the northern domain, and 3) a preponderance of major synclines in the south and a major ESE-oriented anticline. Gosselin (1996) interpreted that many of the fault and fold systems in the south are trending SE to EW, often with a strong SE-overturned component. Though fault movements are poorly constrained in the south, the De Maures fault (Figure 7-19) is interpreted to be sinistral or syn-volcanic as it juxtaposes an upper and lower limb of ferrotholeiites (Gosselin, 1996).

Property-scale structural and geological mapping conducted by Kenorland Minerals in 2019 aimed at defining structural systems on the Frotet property that are prospective for economic mineralization. This approach contrasts with the regional-scale structural interpretations of the Frotet-Troilus segment and the Frotet-Evans Greenstone belt by Gosselin (1996), which were presented above (*Figure 7-19*).

Foliation

Regional mapping during summer 2019 defined a steeply dipping penetrative foliation that is partitioned into intensely deformed shear zones and locally deflected by intrusive bodies. The ~113 structural measurements obtained during 2019 provide the basis for dividing the Frotet property into structural domains. At least three main foliation trends are present on the Frotet property: 1) foliation striking SW (~240/80° and ~257/85°), 2) foliation striking EW to NNE (~080/85°), and 3) foliation striking NE (045/55°). Locally some of these fabrics are moderately crenulated with an orientation of ~222/90.

Primarily based upon dominant foliation measurements collected during the property-scale 2019 mapping program, the Northern and Southern domains defined by Gosselin (1996) are further segmented into four structural domains. In the northern portion of the property, the La Fourche fault system separates Domain 1 and 2, and in the southern portion the Frotet fault system separates Domains 3 and 4 (Figure 7-20).

- 1. Domain 1 which includes the Cressida and Troilus mapping areas, is defined by an average foliation striking ~240/80° (*Figure 7-21*).
- 2. Domain 2 covers the Lac La Fourche mapping area, and has foliation striking ~257/85° (*Figure 7-21*).
- 3. Domain 3 encompasses the mapping areas of East Frotet and Chatillon, and is defined by an average foliation striking ~080/85° (*Figure 7-21*).
- 4. Domain 4 is represented by the Regnault and West Frotet mapping areas which is characterized by an average foliation striking ~045/55° (*Figure 7-21*).

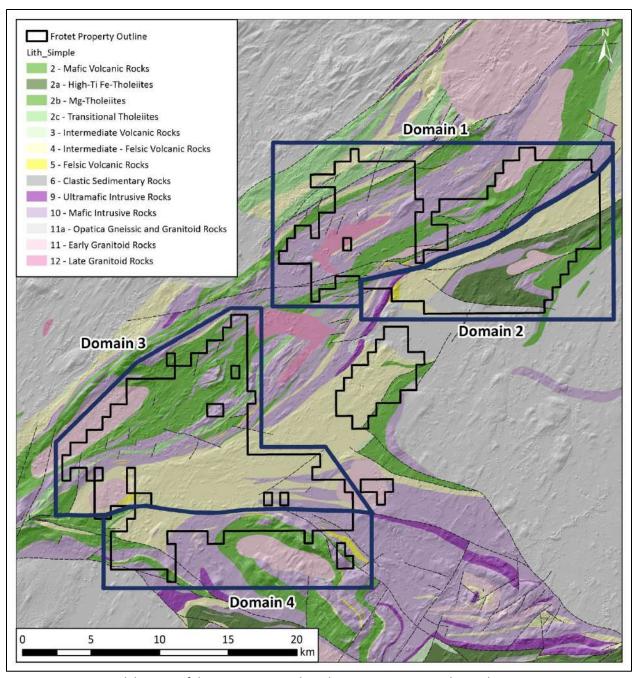


Figure 7-20: Structural domains of the Frotet property based on 2019 mapping and Gosselin, 1996.

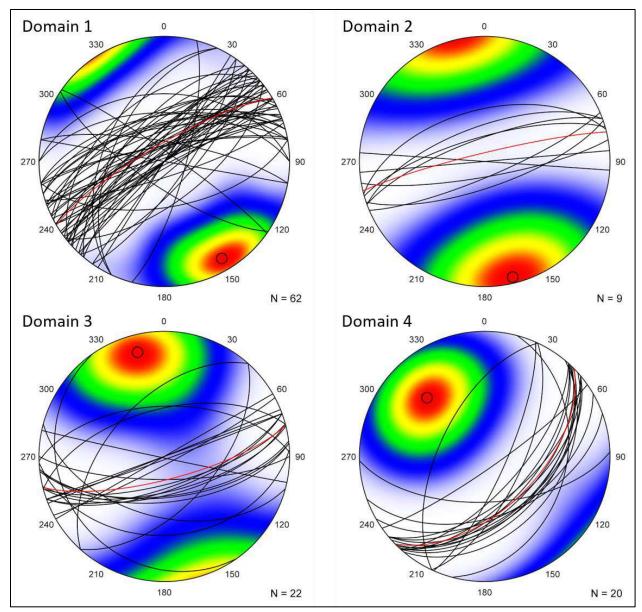


Figure 7-21: Stereonets depicting foliation orientations in each domain. The red line represents the average maximum eigenvector orientation with the associated average pole (red dot).

Folding

With only six hinge orientations recorded during the 2019 field season, interpretation of folding is largely supported by regional magnetometry. In outcrop, tight isoclinal folding (*Figure 7-22*) is recorded with axial traces typically trending NE (~80-100°) to SW (~215-250°) with shallow to moderate plunges of 30-50° (*Figure 7-23*). Regionally, this style of tight parasitic folding is supported by similar patterns visible within the magnetic data.

Figure 7-22: Representative folding mapped on the Frotet property; A) exhibits folding of a quartz fe-carbonate vein within the Frotet area, B) intense folding of intermediate-felsic clasts within the La Fourche area.

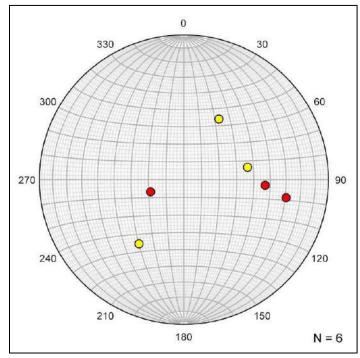


Figure 7-23: Hinge measurements in Domain 2 (yellow circles) exhibit a NE-SW trend; whereas an EW trend characterizes Domain 3 (red circles).

Faulting

Due to limited exposure, the fault network is predominantly defined by magnetometry with support from previous historic interpretations (*Panneton and Gaudreault, 1993; Gosselin, 1996*). The fault network on Frotet is subdivided into three systems:

- 1. The first system is oriented 045-060° and has been suggested to locally correspond to the Regnault fault system (previously Moleon Bay; *Panneton and Gaudreault, 1993*). On magnetometry, these NE-trending faults appear to regionally transect the Frotet-Evans belt with minor variation in orientation.
- 2. The second system is oriented 080-090° and has been defined as the Frotet Lake fault system (*Panneton and Gaudreault, 1993*).
- 3. The third system is interpreted to be characterized by subvertical NS, NE and SE-trending faults

The first fault system is defined by some large NE-trending faults that transect the Frotet-Evans belt during D_2 deformation. On the Frotet property these large fault systems are also locally expressed as NE-trending splays that may be accommodating rotational strain that occurs along regional fault jogs (*Groves et al, 2018*). The second system is outlined trending EW to SE by magnetometry over Frotet Lake and has been previously interpreted to transect the first system (*Simard, 1987*). The major divergence in fault orientations between the first and second fault systems suggests there may be an underlying control, such as a reactivated older EW-structure, that may be the reason for the nonconforming fault orientation. Based on these observations, it is interpreted that this fault system may be the result of late- D_2 deformation. The third fault system is characterized by NS, NE and SE-trending fault systems and has been interpreted to transect both the first and second fault systems (*Panneton and Gaudreault, 1993; Gosselin, 1996*). Interpretation of current magnetic data supports the cross-cutting nature of these faults. It is likely that the third fault system is contemporaneous with D_3 deformation that resulted in the regional SE-trending structures interpreted by Davis et al. (*1995*) (*Figure 7-3;* Nottoway River and Lucky Strike shear zones).

Veining

During the 2019 field mapping program, several types and styles of veining were identified in outcrop. Within the Frotet property there appears to be at least five main vein types that are defined as V1, V2, V3, V4, and V5, which are described below. It is not currently known if the mineralized quartz-pyrite veins identified in boulders (2019) and drilling (2020) at Regnault fits within this regional classification of veining observed. The Regnault quartz veining and mineralization will be further discussed in Sections 7.3, and 10.0 of this report.

V1 veins are the best exposed on the Frotet property, particularly along the shorelines of Frotet and Chatillon lakes. These veins have an axial trace subparallel to the local foliation with cross-cutting wavy

limbs, so it is suggested that these veins could be early-syn D₂. With limbs that are subparallel to foliation, the V2 type veins are interpreted to be also early-syn D₂. V3 type veins are slightly discordant to foliation and often exhibit minor rotation, so it is suggested that these veins may have developed in Riedell shear fractures in the later stages of D₂ deformation. V4 veins are interpreted to be late in the deformational history of the region and could likely be related to D₃ shearing, which was also oriented NS, NE and NW-SE (*Davis et al., 1995*). V5 veins are uncommon within the Frotet property. Due to their proximity to a major fault system (La Fourche area), it is suggested that V5 veins may be related to syn-D2 fault-fracture filling.

V1) Iron Carbonate veins: With a distinct orange weathered surface, these veins are composed of coarse crystalline quartz with iron-carbonate and range in thickness from 10 cm to ~1m (Figure 7-24). There is minor silicification along the margins of the vein but mineralization appears to be uncommon with only localized zones of trace disseminated pyrite. These veins are folded (hinge plunge varies from almost horizontal to ~50° with an axial plane roughly parallel to foliation (*Figure 7-24*; foliation strikes 102/89°). The veins typically cross-cut foliation but can also be similar in orientation.

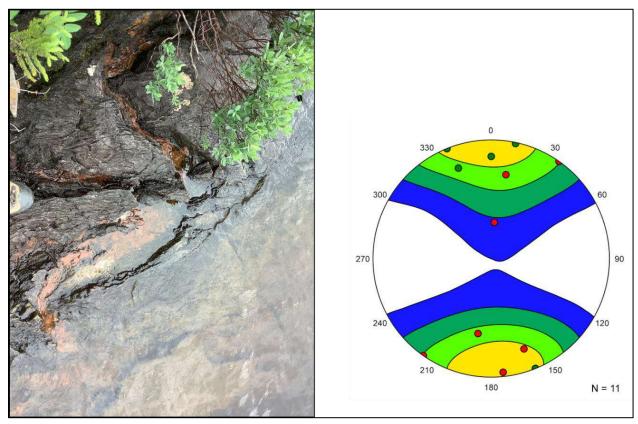


Figure 7-24: V1 type vein (station 19CD-162) is folded and cross-cuts foliation; plotted on the stereonet are a number of poles for foliation (green poles) in relation to V1 veins (red poles and contouring).

V2) Quartz-Carbonate veins: The most distinctive feature of these quartz veins is that they are parasitically folded (*Figure 7-25*). Exposures of these veins are rare with this example (*Figure 7-25*) mapped as striking 242/87, with a hinge plunging 69/054°. This orientation is similar to that

of foliation, which strikes 253/83°. Typically ~2-4 cm thick, these veins often have thin chloritic selvedges with patchy biotite alteration. Mineralization is minor, with localized zones containing <0.5% disseminated pyrite within the selvages.

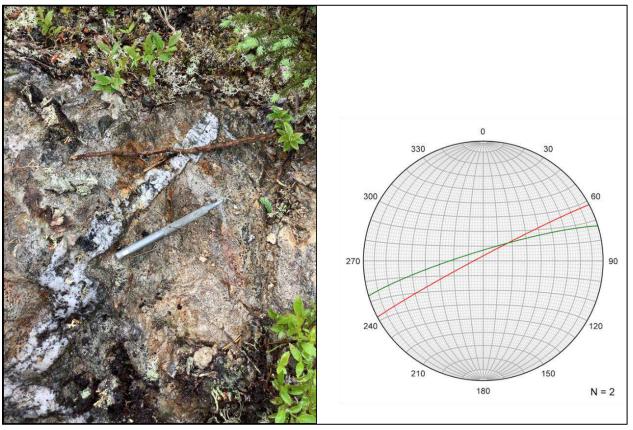


Figure 7-25: Parasitically folded V2 type vein with weak localized crenulation (station 19CD-023).

V3) Quartz veins: These pseudo-brecciated veins range in thickness from 2-5 cm. These appear to have developed as a sub-linear stockwork (*Figure 7-26*) and are best represented in outcrop within the Cressida area. Coarse tourmaline and biotite are common within these veins often forming as clusters along the margins. Up to ~40% coarse pyrite-chalcopyrite-arsenopyrite is disseminated within the quartz veins. The veins generally strike 221/88° which is ~20° to the local foliation striking 240/76° (*Figure 7-26*).

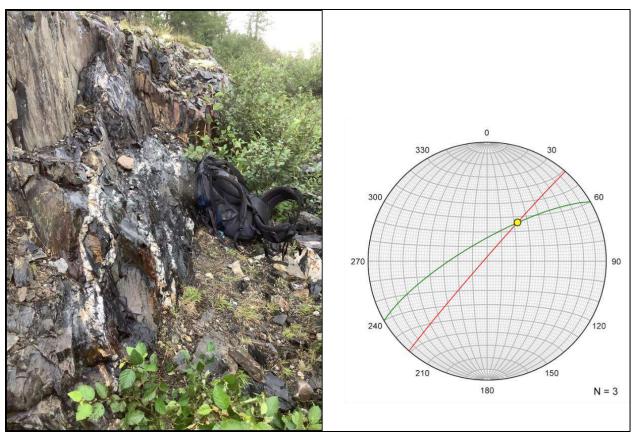


Figure 7-26: Sub-linear V3 type veins hosted by a magnetic mudstone (station 19CD-220); this vein type is acutely ccw to foliation by \sim 20°.

V4) Quartz veins: These quartz veins are typically discontinuous, planar and can be up to ~30 cm thick (*Figure 7-27*). There appears to be no mineralization or alteration associated with this vein set. A general strike of 017/88° is common for this vein type which typically cross-cuts foliation and can often occupy NW to NE-trending shears or offsets.

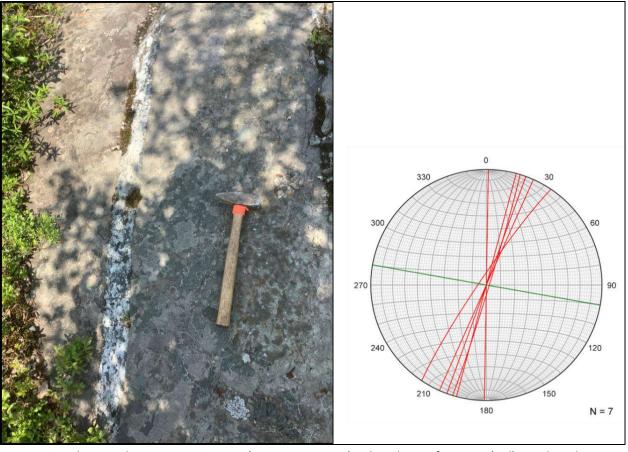


Figure 7-27: Planar and massive V4 type vein (station 19FM-276); other planes of V4 veins (red) are plotted against an average foliation (green) on the stereonet.

V5) Quartz vein: This distinct vein type is defined by a metre-scale quartz vein that is hosted by a major structure that marks the boundary between two important stratigraphic horizons at the La Fourche target area (*Figure 7-28*). The quartz vein is white to dark grey and massive with no significant mineralization. Localized foliation appears to deform around the quartz vein suggesting syn-D₂ timing. The vein appears to generally trend 225° with an unknown dip.

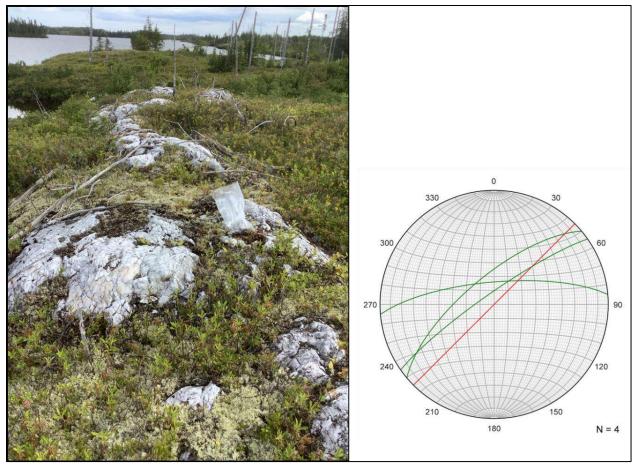


Figure 7-28: Massive V5 type vein (station 19CD-257); general trend (red) plotted against foliation (green) that varies in orientation proximal to vein.

Summarizing key structural features across the Frotet property with respect to the regional Opatica tectonic history (Table 7-3), by domains (defined by Figure 7-20) are described below.

Table 7-3: Summary of structures and associated mineralization recorded and interpreted on the Frotet property.

AGE (Davis et	STRUCTURAL SYSTEM RECORDED	ASSOCIATED STRUCTURES / UNITS / MINERALISATION
al., 1995)	ON FROTET PROPERTY	
2693-2702 Ma	D1 - Troilus syncline	Unknown associations to D ₁ deformation
2690-2700 Ma	D2 - Many major synclines and	Mineralization linked to vein-type deposits
	anticlines throughout domains 1,2,	Syn D₂ – Trace mineralization associated with folded ~2-
	and 3; Major fault systems-	4 cm thick quartz veins (Type 2) and <1 m thick quartz-fe
	oriented EW and NE with	carbonate veins (Type 1)
	undefined strike-slip motion	Late D ₂ – Significant mineralization associated with sub-
		linear stockwork quartz veining (Type 3) typically ~20° to
		foliation. Proximity to D ₂ fault systems suggest these
		could be associated with R or P-shears that develop late
		in the D ₂ deformational history
~2686 ± 4 Ma	D3 - NS, NW and NE trending faults	No significant sulphides
	with dextral or sinistral offsets	

Within Domain 1, main features (excluding foliation) recorded in 2019 include:

- Local variations in steeply dipping to slightly overturned limbs within the Troilus mapping area.
 This would suggest parasitic folding is superimposed on the main D₁-syncline structure outlined by Gosselin (1996).
- 2. Dextral and sinistral movement was recorded in the field for NS, NE, and SE-trending faults. This fault movement is also supported by macro-interpretation of magnetic data. A reverse motion was also proposed on the NW-trending d'Oudiette fault (Figure 7-19), which juxtaposes a volcano-sedimentary and gneiss contact in the south (Gosselin, 1996). This interpretation for possible reverse motion on NW-trending faults was not verified during the 2019 season. Dextral motion on EW-trending faults (Gosselin, 1996), in particular the La Fourche and Dionne fault systems, was also not verified in the field during 2019 and is still largely dependant on magnetic data interpretation.
- 3. Tight and isoclinal folding was mapped during 2019 in the SW Cressida mapping area. This data supports the interpretation by Gosselin (1996) that this area could have been more intensely folded and faulted.

Domain 2 is separated from Domain 1 by the regional La Fourche fault system, and is distinguished by subtle differences in fold geometry and other fabrics. Foliation orientation remains roughly the same. Main observations include:

- 1. Very subtle WSW-ENE oriented fabric (Figure 7-21)
- 2. Domain 2 contains a major D_2 anticline (La Fourche), which is both different in timing and geometry from the major D_1 syncline (Troilus) in Domain 1. It is inferred that these zones have been juxtaposed by the major La Fourche fault system, likely post-D1.

Main features recorded for Domain three include:

- 1. Tight isoclinal folding locally present within Chatillon and East Frotet Lake mapping areas plunging towards $\sim 090/40^{\circ}$ and $\sim 250/70^{\circ}$. Though recordings of folds were limited in 2019, most were recorded in Domain 3, which may support the observation by Gosselin (1996) of a preponderance of D_2 -structures in the south.
- 2. A narrow mylonitic band developed within basalt located in the Chatillon mapping area revealed an WSW-trending (~264°) sinistral shear zone with well developed C-S fabric. This could support the interpretation of sinistral strike-slip motion along some D₂-fault systems that trend EW-NNE, similar to the motion interpreted for the De Maures fault in the south (Gosselin, 1996).

3. Foliation is dipping steeply to the SE, which is in contrast to steeply dipping foliation to the NNW in Domains 1 and 2 (*Figure 7-21*). In addition, fold hinges are predominantly trending EW in domain three and NE-SW in domain two (*Figure 7-23*). These observations could support the interpretation by Gosselin (1996) that folds and fabrics that were initially associated with a NE-axial trend may have been locally reoriented to an ENE-EW orientation in the south. The prevalence of overturned synclines (Gosselin, 1996) within Domain 3 could also be indicative of a more complicated and intense deformation history in the south.

Domain 4 is located south of Domain 4, separated by the Frotet fault system, the main structural features identified include:

1. An intense and penetrative foliation striking NE with a shallow dip ~045/55° (*Figure 7-21*). The consistency and intensity of the foliation supports previous interpretations by Placer Dome Inc. of a major structure oriented 045-060° (Regnault-Moleon Bay fault; GM 52168). Placer Dome Inc. also concluded that the early Regnault fault system is cut by a later system that corresponds to the Frotet fault system as suggested by Simard (1987). It remains unclear from field work in 2019 how the Regnault and Frotet Lake fault systems are linked.

7.2.5 METAMORPHIC DOMAINS

The metamorphic grade of the Frotet-Troilus segment of the greenstone belt is generally greenschist facies in the interior regions (Zones I and II in Figure 7-29), and increases to amphibolite facies at the margins of the belt and in proximity to contacts with large granitoid intrusions. Simard's 1987 metamorphic map shows metamorphic gradients occurring along several major fault systems within the belt. Gardoll (2005) shows that structures which coincide with metamorphic gradients are one of the best indicators of orogenic gold prospectivity in the Yilgarn craton of Western Australia, as these structures have seen significant displacement in order to juxtapose these differing crustal levels.

In the southern portion of the Frotet property, an E-W trending structure along the margins of Lac Frotet juxtaposes two different metamorphic domains, Zone I and Zone II. In the northeastern portion of the property, the NE trending La Fourche fault system is responsible for the Zone II and Zone III gradient. Parallel to the NE trending La Fourche fault system is the Parker fault system along the northwestern portion of the property also controlling a Zone I and II metamorphic gradient. These fault systems remain favorable locations for hosting orogenic gold mineralization.

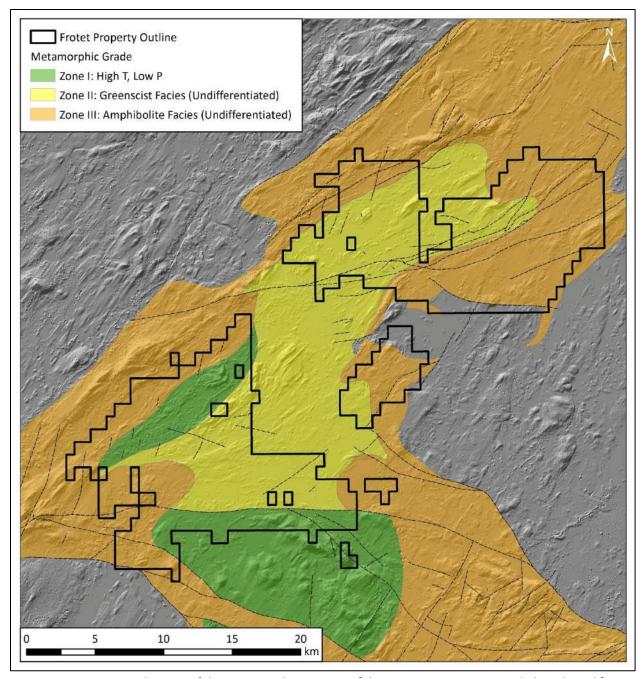


Figure 7-29: Metamorphic map of the Frotet-Troilus segment of the Frotet-Evans greenstone belt. Adapted from Simard, 1987.

7.3 MINERALIZATION and ALTERATION

Within the Frotet property historically identified-explored target areas have been briefly discussed in Section 6.2 of this report. As these target areas are not the focus of Kenorland, they will not be discussed further. Kenorland's exploration campaigns have identified several regional targets across the property including the La Fourche, Cressida, Chatillon North and South, and Regnault which are

discussed below. The most significant and advanced mineralized area is the Reganult target which is discussed in greater detail in Section 7.3.2 below.

7.3.1 REGIONAL TARGETS

Till geochemistry is the most extensive dataset which Kenorland has acquired on the Frotet project. Utilizing the known southwestern ice flow direction, the till surveys were designed to vector into any bedrock source which may exist. Figures 7-30 through 7-43 display all acquired till geochemistry, including the designated target areas identified by Kenorland.

Scrutiny of the data suggests that different styles of bedrock mineralization are the sources of anomalism between the target areas. This is defined by the drastically different metal associations between the areas. Summaries of the target areas are discussed below.

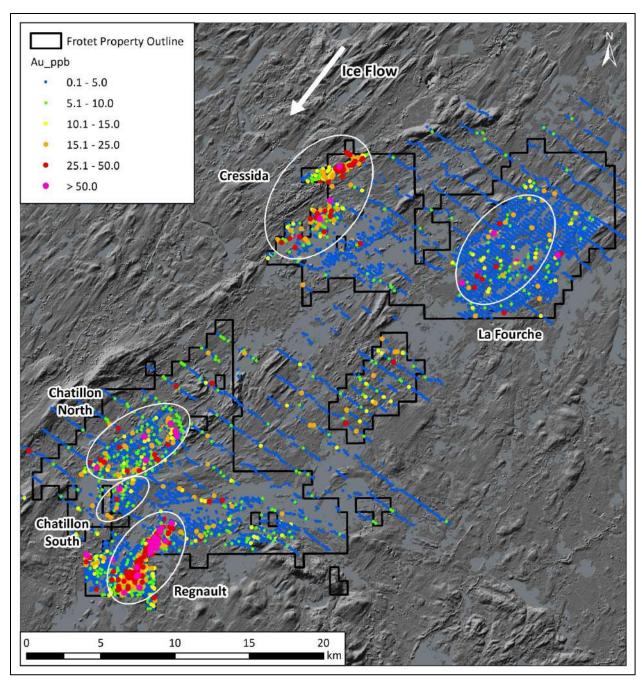


Figure 7-30: Regional till chemistry and target areas – Au (ppb).

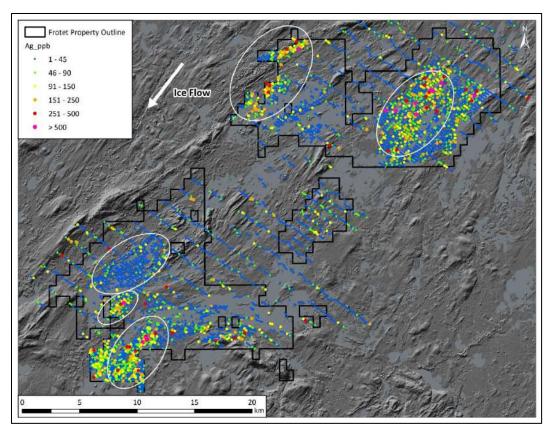


Figure 7-31: Regional till geochemistry and target areas – Ag (ppb).

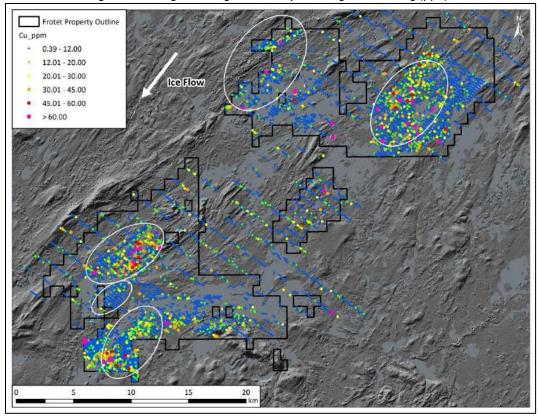


Figure 7-32: Regional till geochemistry and target areas – Cu (ppm).

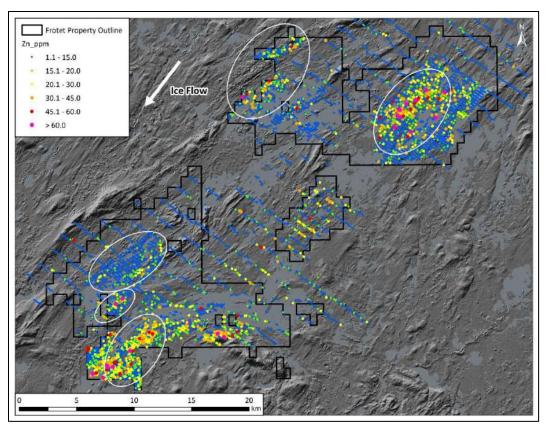


Figure 7-33: Regional till geochemistry and target areas – Zn (ppm).

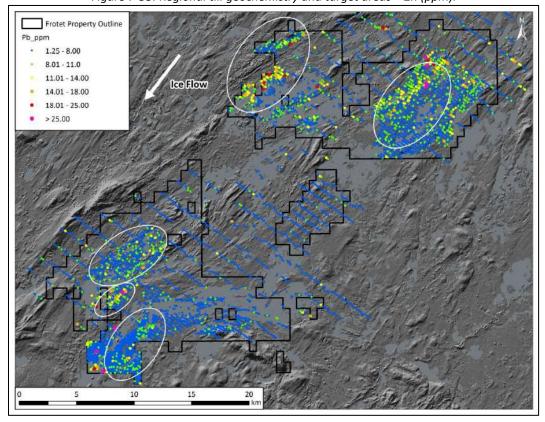


Figure 7-34: Regional till geochemistry and target areas – Pb (ppm).

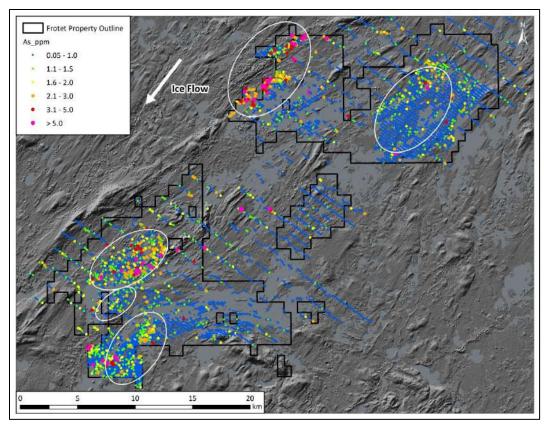


Figure 7-35: Regional till geochemistry and target areas – As (ppm).

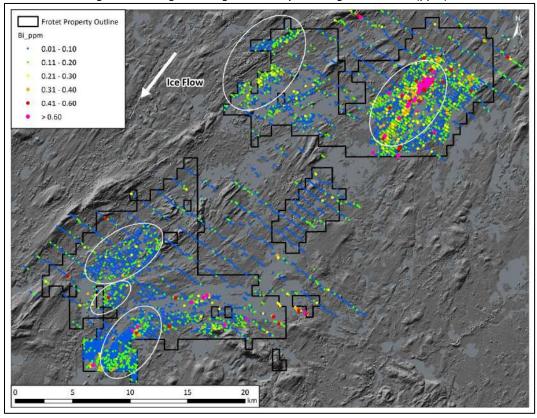


Figure 7-36: Regional till geochemistry and target areas – Bi (ppm).

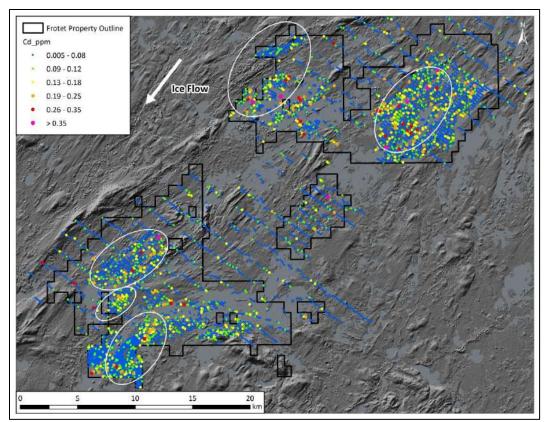


Figure 7-37: Regional till geochemistry and target areas – Cd (ppm).

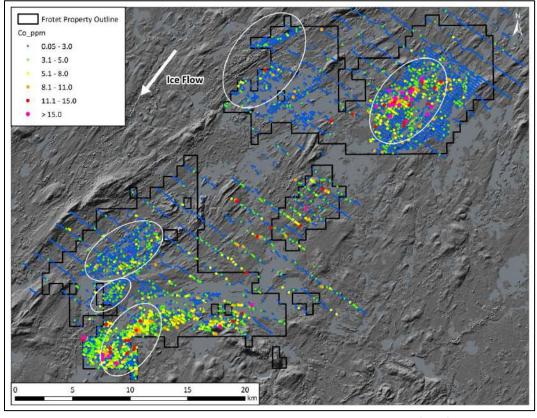


Figure 7-38: Regional till geochemistry and target areas – Co (ppm).

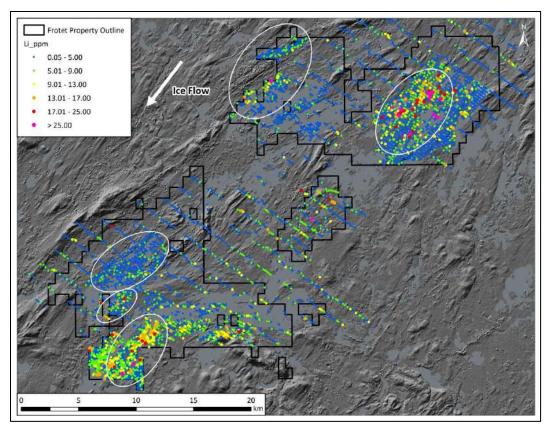


Figure 7-39: Regional till geochemistry and target areas – Li (ppm).

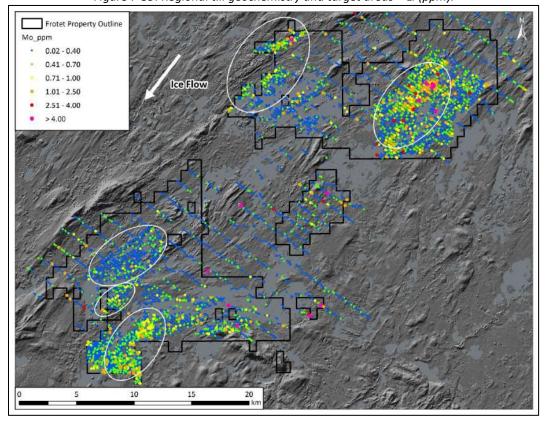


Figure 7-40: Regional till geochemistry and target areas – Mo (ppm).

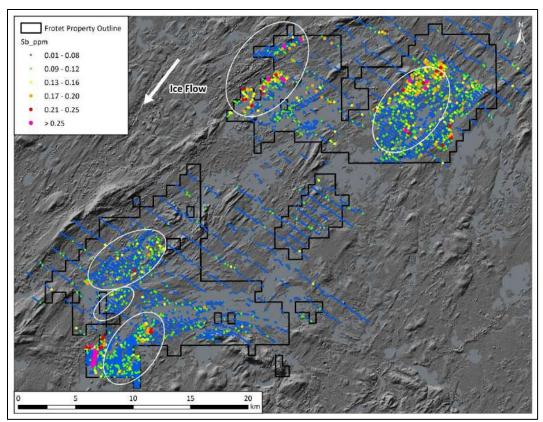


Figure 7-41: Regional till geochemistry and target areas – Sb (ppm).

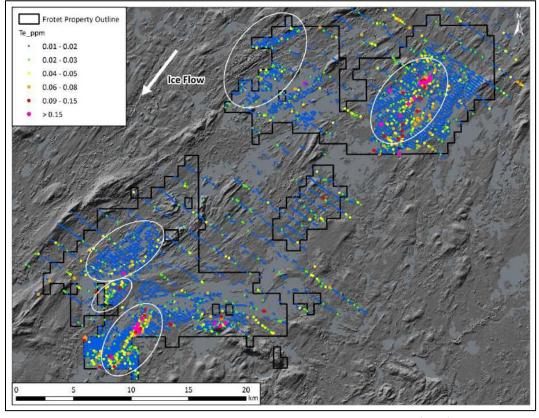


Figure 7-42: Regional till geochemistry and target areas – Te (ppm).

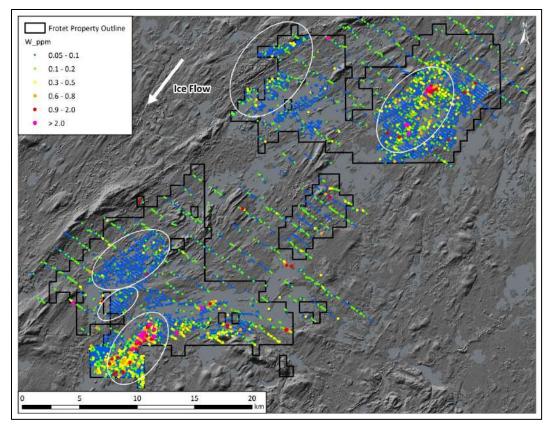


Figure 7-43: Regional till geochemistry and target areas – W (ppm).

Regnault Target Area

The till anomalism at Regnault is characterized by Au-Ag-Te-Bi-W-Mo±Cu-Pb-Cd metal associations, with the head source of the dispersal train underlain by a granodiorite-diorite-gabbro intrusive complex within intermediate-felsic volcanic rocks of the Frotet formation. Boulder prospecting around Lac Regnault returned samples containing up to 408 ppm Au and >200 ppm Ag from pyrite mineralized quartz veins. The Regnault target area is further discussed in detail in Section 7.3.2 of this report.

Chatillon South

The till anomalism at Chatillon South is characterized by Ag-Zn-Pb±Au-Cd-Li-Mo metal associations located in the Frotet formation rock suite, which has been mapped as intermediate lapilli tuffs and tuff breccias near the contact of a more massive intermediate flow. Boulder prospecting has noted minor abundances of massive intermediate-mafic volcanics in the area. Several boulders have returned anomalous values in zinc and lead, with a couple samples returning significant Au-Ag in 2019 up to 21.6 ppm Au and 45.3 ppm Ag (sample 3479626). The anomalous Au-Ag mineralization is associated with massive intermediate-mafic rocks, which have been silicified±chlorite altered and contains up to 5% pyrite mineralization. The geological setting and metal associations observed at Chatillion South may indicate the presence of VMS mineralization.

Chatillon North

The till anomalism at Chatillon North is characterized by Cu-As±Au-Cd metal associations and is underlain by stratigraphy composed of the Mesiere formation, Chatillon formation and the Frotet formation. till anomalism is not as coherent through this target area, and may represent several mineralized bedrock sources, but the main Cu-As±Au-Cd till anomalism is situated within transitional tholeites of the Chatillon formation. These rocks have been mapped as mafic-intermediate amygdaloidal flows interlayered with gabbro. Boulder prospecting was brief through this target area in 2019 and returned one anomalous sample which returned 0.53 ppm Au (sample 3479796) from silicified-chlorite altered mafic volcanics with 2-5% disseminated pyrite.

La Fourche

The till anomalism at La Fourche is characterized by Ag-Zn-Bi-Co-Li-Mo-Te-W±Au-Cu-Pb-Cd-Sb metal associations, which most likely has multiple different altered/mineralized bedrock sources. The till anomalism is underlain by the La Fourche fault system which juxtaposes the Mesiere formation (northwest) against the Frotet formation (central) and the La Fourche formation (southeast). A large V5 Type quartz vein has been mapped as fault bounded along the fault controlled contact between the Mesiere formation gabbro rocks and the intermediate-felsic lapilli tuffs to volcaniclastic rocks of the Frotet formation. This vein is believed to be responsible for the very strong and coherent Bi-Mo-Te-W anomalism which has a dispersal train of approximately 5km. The northern half of the target area shares the similar stratigraphy to the Chatillon North and South target areas and has potential to host VMS style of mineralization. Boulder prospecting in the area has returned weakly anomalous copper values with historic digitized samples from assessment reports returning up to 0.16% Cu (sample 211424, report GM 60965). The historically explored Lac La Fourche prospect previously discussed in Section 6.2 of this report is located within this target area, which was idenitified with weakly anomalous Au-Cu-Cd-Te-W in till at the southwestern end of Lac La Fourche.

Cressida

The till anomalism at Cressida is characterized by Au-Ag-Zn-Pb-As-Sb±Cd metal associations, which has currently not been determined if it is associated with the Troilus Au-Cu deposit till dispersal train, or if it represents another mineralized bedrock source in the area. There is also a wide zone of mapped glaciofluvial deposits mixed with till deposits through the target area which complicates determining any possible source or transport distance of the till anomalism. The area is underlain by a series of regional SW-NE trending thrust faults which have juxtaposed Parker formation, Frotet formation, Mesiere formation and the Habitation formations. Prospecting in the area in 2019 returned anomalous Au-Cu mineralization in outcrop; sample 3479703 – 1.75 ppm Au and 0.01% Cu, and sample 3479697 - 0.10 ppm Au and 0.08% Cu. This mineralization was associated with 5-25cm scale quartz veins with 0.5-2.0% pyrite and trace chalcopyrite within mafic volcanic rocks.

The following set of figures displays the rock samples (outcrops and boulders) which have been collected during Kenorland exploration campaigns between 2018 and 2020 (squares) as well as historic rock samples which have digitized from assessment reports (triangles).

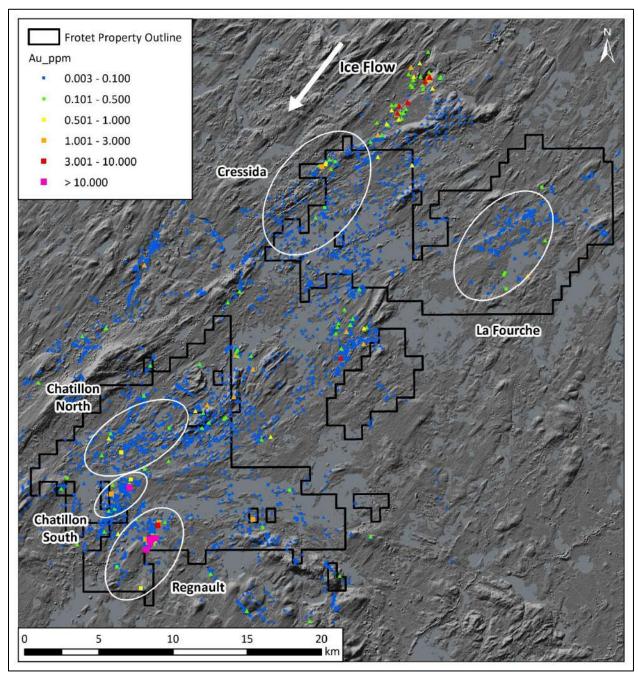


Figure 7-44: Regional rock geochemistry and target areas – Au (ppm).

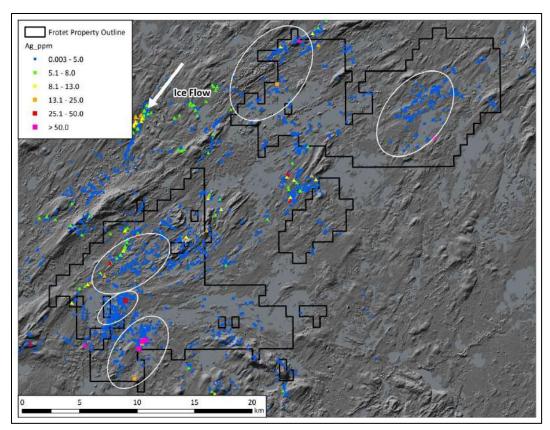


Figure 7-45: Regional rock geochemistry and target areas – Ag (ppm).

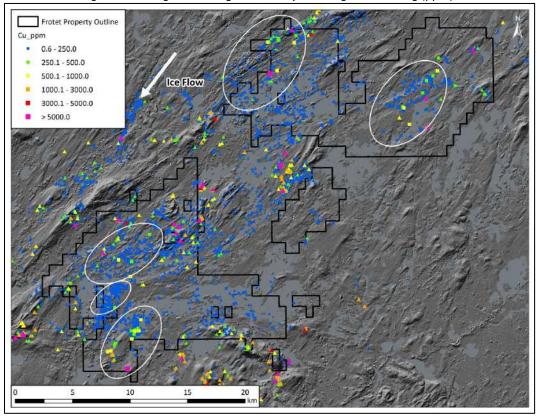


Figure 7-46: Regional rock geochemistry and target areas – Cu (ppm).

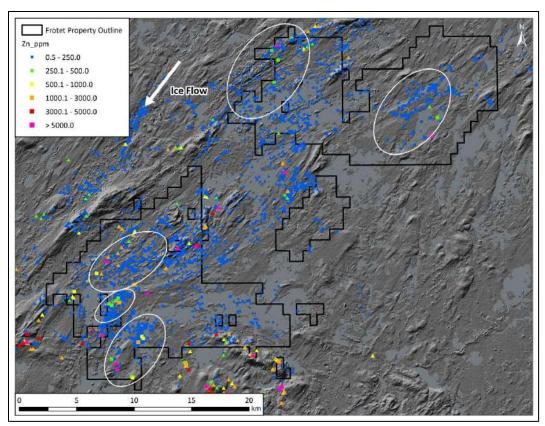


Figure 7-47: Regional rock geochemistry and target areas – Zn (ppm).

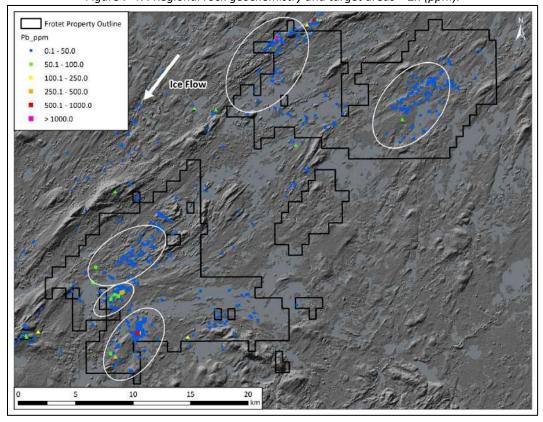


Figure 7-48: Regional rock geochemistry and target areas – Pb (ppm).

7.3.2 REGNAULT TARGET AREA

The current priority of Kenorland is the newly discovered Regnault target area. Exploration between 2018 and 2019 discovered a significant gold in till anomaly, gold grains in till, and high grade gold in rocks samples from boulder prospecting at Regnault (Figure 7-30). A two phase drill program carried out in 2020 intersected significant high grade gold over an area of 1.9 km by 0.5 km (Figure 7-49). This section will discuss the exploration results obtained from the Regnault target.

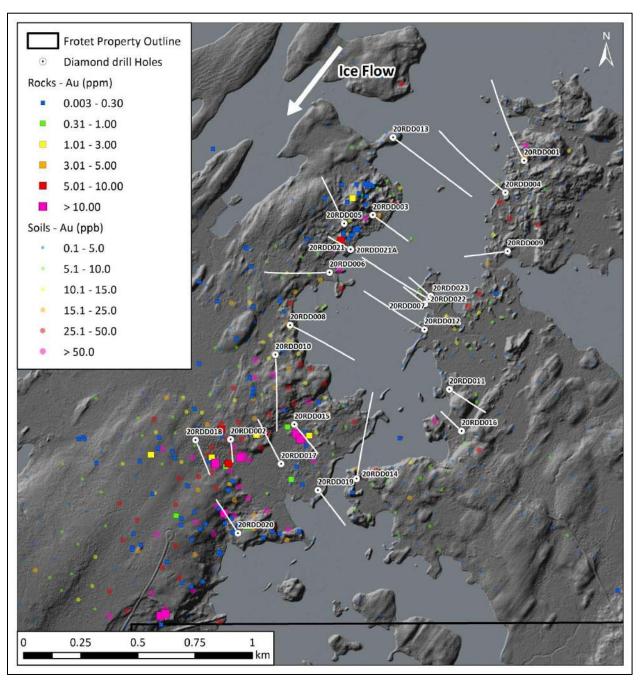


Figure 7-49: Map showing the gold values in till and rock samples, and drill hole locations at the Regnault.

The gold in till anomaly (dispersal train) has been identified to extend for 5km following a southwestern ice flow direction with the head of the dispersal train located under Lac Regnault (Figure 7-30). The gold in till anomaly is very coherant with samples returning >50 ppb Au in the northeast (Figure 7-49), tapering to commonly 25-50 ppb Au to the south west. Till sampling was carried out down ice direction from the lake to determine the tenure of gold grains. In total fifteen samples were collected, of which 7 samples returned >100 gold grains with highs of 253 grains (176 pristine, 67 modified, and 10 reshaped) and 283 grains (159 pristine, 94 modified, and 30 reshaped). The high tenure of total gold grains, and high percentage of pristine grains indicates that the transport distance was short.

Prospecting identified many boulder fields around Lac Regnault which identified many gold-silver rich quartz veins, and disseminated pyrite mineralization. Sampled boulders returned assays up to 408 ppm Au and >200 ppm Ag (sample 3479794), including 10 out of 134 samples in the Regnault area which returned assays > 10.0 ppm Au (Figure 7-49). No outcrops were observed in the area during the field investigations.

Mineralisation at Regnault is characterised by high grade quartz±calcite-pyrite veins/stockwork with disseminated pyrite (commonly up to 5%) in the alteration selvedges. No visible gold was identified in rock samples during the boulder prospecting, but has been observed in several quartz veins intersected in drilling. The vein systems intersected in drilling to date range from weak stockwork over 1-2 meters of core length, to strong (~30-50% veining) over tens of meters.

From the boulder prospecting, the dominant host of quartz veins are diorite-gabbro intrusive rocks, but gold berring rock samples which have undergone silicification and pyritization have been identified as intrusive and volcaniclastic rocks (Figure 7-50). In drilling, the most significant host rock identified is the diorite intrusive complex, and very little gold minerlization has been encountered in the volcanic rocks to date. Pyrite can be disseminated, clotted or in white sacharine quartz veins. Two rock samples containing quartz stockwork and wallrock, showed that the veins were relatively high angle to predominent fabric; between 40° an 70°, (Figure 7-50).

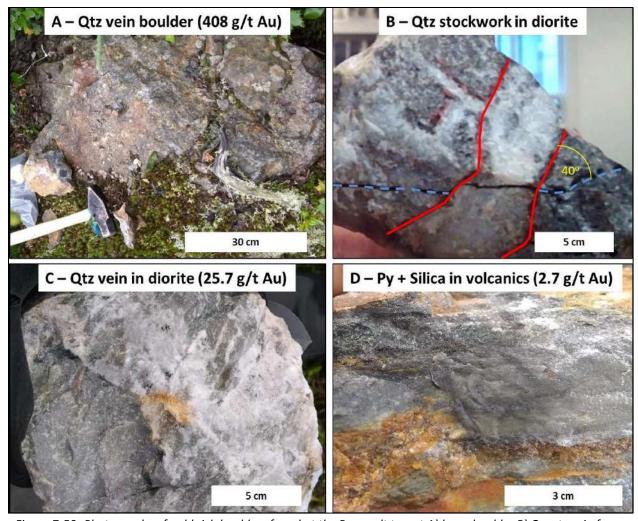


Figure 7-50: Photographs of gold rich boulders found at the Regnault target A) large boulder B) Quartz vein from gold rich boulder (408 ppm gold) showing relative angle to the dominant meta-diorite foliation C) Vein in wall rock

D) Meta volcano sedimentary or silificied metasedimentary wall rock, no veins.

The absense of outcrop required geophysical surveys to aid in the drill targeting process. 3D inversions were completed for the 25m line spaced magnetic survey, and the ground Induced Polarization survey which were designed to cover the suspected mineralized bedrock source responsible for the gold in till and till anomalism.

Figure 7-51 displays the magnetic data covering Regnault, with the current known extent (extrapolated to surface from drilling utilizing magnetic data for the interpretation) of the diorite-gabbro intrusive complex. It also illustrates several remanent magnetic features within the intrusive complex. This demonstrates that the complex is multi-phase, however it is currently unknown what phase of intrusive rock is responsible for this. Several magnetic lineaments are present within the complex, but due to the low strain nature of the mineralized vein structures it is currently unclear how these relate to mineralization.

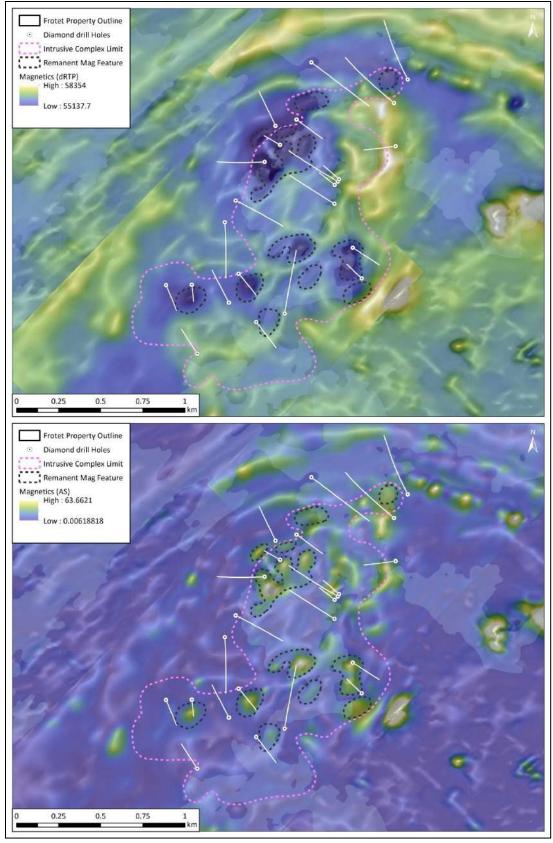


Figure 7-51: Drilling over magnetic data: dRTP (top), AS (bottom)

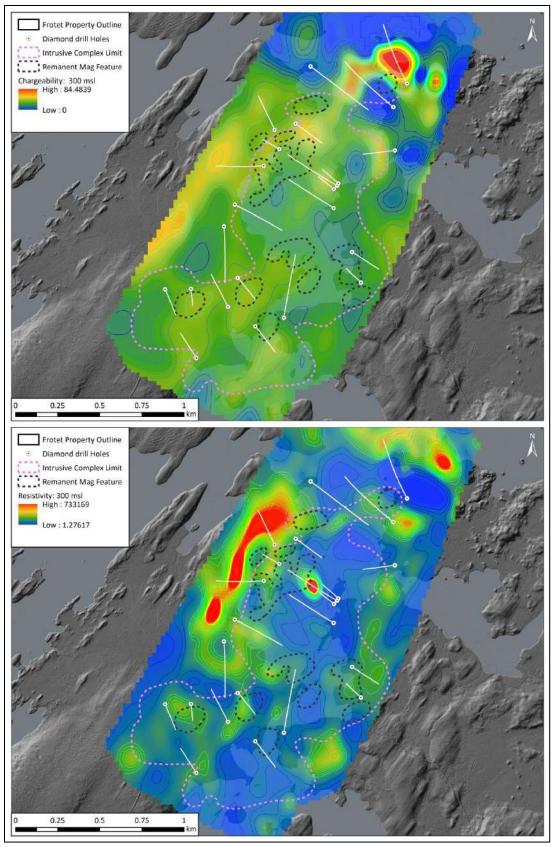


Figure 7-52: Drilling over completed ground IP survey (300msl slice); chargeability (top), resistivity (bottom).

Sulphide content (commonly up to 5%, and rarely up to 10% in localized abundnaces) and silicification identified with Au mineralization in the boulder samples initiated the use of ground IP to aid in drill targeting. IP lines were designed at 200m spacing, with tie lines at 400m spacing as an initial test to determine the effectiveness. The 3D inversions of chargeability and resistivity were completed (Figure 7-52). Major lineaments that correlated between the magnetics and chargeability and/or resistivity anomalies were tested during the Phase I drill program. Moderate chargeability anomalies (9-12 msec shells) currently have the best correlation with known mineralization. The resistivity has so far be less useful for targeting alteration (silicification) associated with mineralization, but does seem to have good correlation with the current interpolation of the intrusive complex margins. Figure 7-52 shows that along the margin contacts, increased resistivity has been measured but due to the large drill spacing, and wide IP survey lines they do not match perfectly. The geological reason for this correlation is not currently understood, but could be hornfelsing of the volcanic rocks, or silicification associated with the emplacement of intrusive breccias along the margins of the complex.

Drill hole 20RDD007 has returned the most significant mineralization to date at the Regnault target returning 29.08m @ 8.47 ppm Au and 12.23 ppm Ag, including 11.13m @ 18.43 ppm Au and 25.93 ppm Ag. Figure 7-53 shows a cross section displaying lithology and assays superimposed on the 3D inversion magnetic (MVI amplitude) model and the chargeability (msec) model. There is a weak, near vertical (on cut section) magnetic lineament associated with the mineralized interval (top cross section), and a localized chargeability anomaly (10-12 msec) which is explained by the 2-10% pyrite logged within the interval.

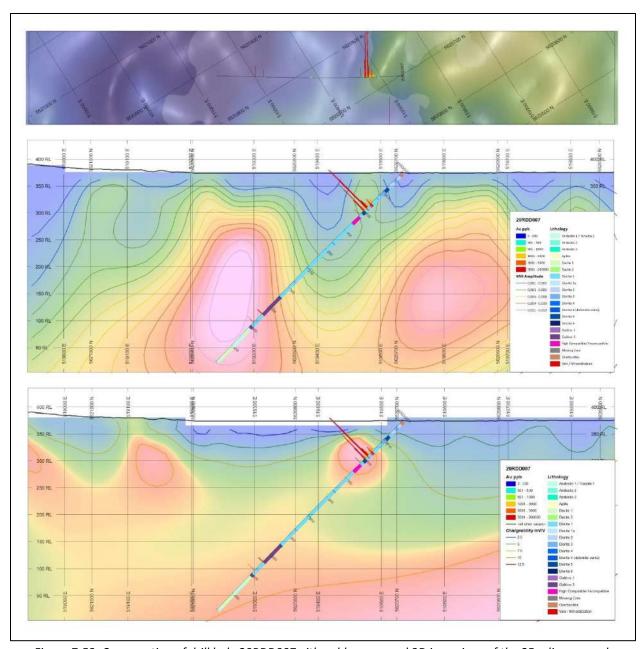


Figure 7-53: Cross section of drill hole 20RDD007with gold assays and 3D inversions of the 25m line spaced magnetic survey (MVI Amplitude), and the ground IP chargeability.

Figure 7-54 shows the quartz±calcite stockwork veining intercepted, illustrated with gold and silver assays (assay results and sample bars displayed above corresponding row of core). It can be noted that the density of quartz±calcite veining varies through the intercept and as a generalized statement; the pyrite content also increases with increased veining, and higher gold-silver values.

Figure 7-54: Photographs of core from drill hole 20RDD007 with gold and silver assays.

Pyrite concentrations seem to be an important factor for gold grade at Regnault. Quartz veins have been identified in boulders and drilling almost barren of sulphide and do not carry any significant gold, rocks which may carry up to 5-10% pyrite in veins and disseminations within the wallrock generally contain significant gold. Pyrite mineralization generally has a brassy appearance, varies from fine to coarse grained (up to 1.0 cm), and ranges from anhedral to euhedral within quartz vein material (Figure 7-55). It has also been noted that the higher gold grade quartz veins contain trace amounts of chalcopyrite and/or galena. Pyrite mineralization within the wallrock is generally finer grained, and subhedral to anhedral. Within the mineralized quartz veins, greater concentrations of pyrite generally occurs along the vein contacts, or clustered along planes which contain fragments of wallrock within the vein.

Visible gold has been identified in several veins intersected by drilling. The gold occurs as sub-millimeter to 2mm grains, and is generally found along or very close to vein contacts with wallrock material (Figure 7-55). The distribution of of visible gold is not currently understood at this time, as several of the highest grade boulders and drill core samples did not have VG logged.

Figure 7-55: Detailed photographs showing pyrite crystallinity in cut hand sample and visible gold in drill core from 20RDD007.

Mineralization at Regnault also contains significant concentrations of silver. Statistically, there is almost a 1:1 ratio for Au:Ag, but this ratio does not remain constant for the higher grade samples. The ratio becomes more erratic, but generally the silver content is higher than gold and commonly reaches up to a 1:2 ratio for Au:Ag.

A statistical analysis of the geochemical data from rocks collected from the Regnault area has shown that gold has a very significant correlation with Te, Bi, Pb, Ag (Pearson Correlation coefficient of >0.9), a positive correlation with Mo, Cu, In and Se (>0.3) and a negative correlation with other elements analysed. Those elements that have corellation coefficient of >0.9 are interpreted to be within a single mineral phase, and that gold is hosted within a telluride or bismuthide. Elements that have some positive correlation are most likely within sulphide phases associated with the silicification and gold mineralisation. The elements with negative correlations were most likely diluted in the silicification of the host.

8.0 DEPOSIT TYPES

8.1 GREENSTONE HOSTED OROGENIC QUARTZ VEIN DEPOSITS

The primary exploration model for the Property has been gold bearing greenstone-hosted quartz - carbonate vein deposit as outlined below by Dube and Gosselin (2007).

"Greenstone-hosted quartz-carbonate vein deposits typically occur in deformed greenstone belts of all ages, especially those with variolitic tholeiitic basalts and ultramafic komatiitic flows intruded by

intermediate to felsic porphyry intrusions, and sometimes with swarms of albitite or lamprophyre dyke. They are distributed along major compressional to transtensional crustal-scale fault zones in deformed greenstone terranes commonly marking the convergent margins between major lithological boundaries, such as volcano-plutonic and sedimentary domains. The large greenstone hosted quartz-carbonate vein deposits are commonly spatially associated with fluvio-alluvial conglomerate (e.g. Timiskaming conglomerate) distributed along major crustal fault zones (e.g. Destor Porcupine Fault). This association suggests an empirical time and space relationship between large-scale deposits and regional unconformities.

These types of deposits are most abundant and significant, in terms of total gold content, in Archean terranes. However, a significant number of world-class deposits are also found in Proterozoic and Paleozoic terranes. In Canada, they represent the main source of gold and are mainly located in the Archean greenstone belts of the Superior and Slave provinces. They also occur in the Paleozoic greenstone terranes of the Appalachian orogen and in the oceanic terranes of the Cordillera. The greenstone-hosted quartz-carbonate vein deposits correspond to structurally controlled complex epigenetic deposits characterized by simple to complex networks of gold-bearing, laminated quartz-carbonate fault-fill veins. These veins are hosted by moderately to steeply dipping, compressional brittle-ductile shear zones and faults with locally associated shallow-dipping extensional veins and hydrothermal breccias. The deposits are hosted by greenschist to locally amphibolite-facies metamorphic rocks of dominantly mafic composition and formed at intermediate depth (5-10 km). The mineralization is syn- to late-deformation and typically post-peak greenschist -facies or syn-peak amphibolite-facies metamorphism. They are typically associated with iron-carbonate alteration. Gold is largely confined to the quartz-carbonate vein network but may also be present in significant amounts within iron-rich sulphidized wall-rock selvages or within silicified and arsenopyrite-rich replacement zones.

There is a general consensus that the greenstone-hosted quartz-carbonate vein deposits are related to metamorphic fluids from accretionary processes and generated by prograde metamorphism and thermal reequilibration of subducted volcano-sedimentary terranes. The deep-seated, Au-transporting metamorphic fluid has been channelled to higher crustal levels through major crustal faults or deformation zones. Along its pathway, the fluid has dissolved various component- notably gold - from the volcano-sedimentary packages, including a potential gold-rich precursor. The fluid then precipitated as vein material or wall-rock replacement in second and third order structures at higher crustal levels through fluid-pressure cycling processes and temperature, pH and other physicochemical variations." - Dubé and Gosselin, 2007

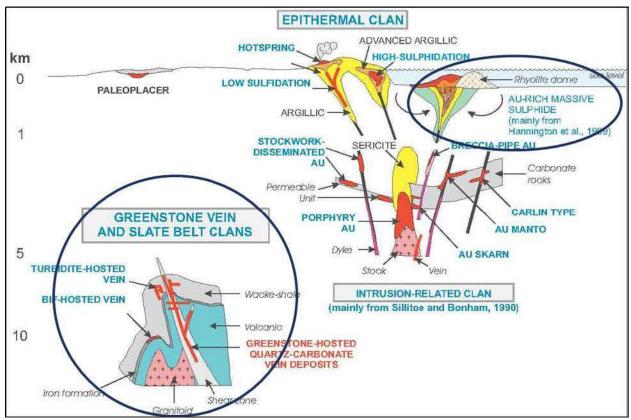


Figure 8-1: Schematic of Greenstone Hosted Gold Deposits and Volcanogenic Massive Sulphide Deposits (from Dube & Gosselin, 2007).

8.2 GOLD-RICH VOLCANOGENIC MASSIVE SULPHIDE DEPOSITS

The secondary exploration model is a gold-rich volcanogenic massive sulphide ("VMS") deposit as outlined below by Galley et al (2007).

"Volcanogenic massive sulphide (VMS) deposits, also known as volcanic-associated, volcanic-hosted, and volcanosedimentary-hosted massive sulphide deposits, are major sources of Zn, Cu, Pb, Ag, and Au, and significant sources for Co, Sn, Se, Mn, Cd, In, Bi, Te, Ga, and Ge. They typically occur as lenses of polymetallic massive sulphide that form at or near the seafloor in submarine volcanic environments, and are classified according to base metal content, gold content, or host-rock lithology. There are close to 350 known VMS deposits in Canada and over 800 known worldwide. Historically, they account for 27% of Canada's Cu production, 49% of its Zn, 20% of its Pb, 40% of its Ag, and 3% of its Au. They are discovered in submarine volcanic terranes that range 1 age from 3.4 Ga to actively forming deposits in modern seafloor environments. The most common feature among all types of VMS deposits is that they are formed in extensional tectonic settings, including both oceanic seafloor spreading and arc environments. Most ancient VMS deposits that are still preserved in the geological record formed mainly in oceanic and continental nascent-arc, rifted arc, and back-arc settings. Primitive bimodal mafic volcanic-dominated oceanic rifted arc and bimodal felsic-dominated siliciclastic continental back-arc terranes contain some of the world's most economically important VMS districts. Most, but not all, significant VMS mining

districts are defined by deposit clusters formed within rifts or calderas. Their clustering is further attributed to a common heat source that triggers large-scale subseafloor fluid convection systems. These subvolcanic intrusions may also supply metals to the VMS hydrothermal systems through magmatic devolatilization. As a result of large-scale fluid flow, VMS mining districts are commonly characterized by extensive semi-conformable zones of hydrothermal alteration that intensifies into zones of discordant alteration in the immediate footwall and hanging wall of individual deposits. VMS camps can be further characterized by the presence of thin, but a really extensive, units of ferruginous chemical sediment formed from exhalation of fluids and distribution of hydrothermal particulates." – Galley et al., 2007

8.3 FROTET-TROILUS GREENSTONE BELT DEPOSITS

Within the Frotet-Troilus segment of the belt, the only major known deposit is the Troilus Au-Cu deposit which historical production of 2.0 Moz of gold, and 69.7 kt of copper from 69.6 Mt of ore. It currently has a mineral resource estimate including indicated resources of 177.3 Mt at 0.75 ppm Au and 0.08% Cu, and inferred resources of 116.7 Mt at 0.73 ppm Au and 0.09% Cu (Troilus Gold Press Release July 28, 2020). The current classification of the Troilus gold deposit is an Archean porphyry-type deposit (Poulsen, 2000) with possible overprinting/remobilization and deposition of later, higher grade orogenic type quartz veins.

The recently discovered Regnault target area by Kenorland has many geologic similarities to the Troilus Au-Cu deposit. Both are hosted within syn-volcanic diorite dominant intrusive complexes, with intrusive breccias locally occurring along the margins of the complex. Also, the main alteration associated with mineralization is biotite, which would be analogous to a typical potassic alteration core of a porphyry deposit for the Troilus deposit, but is located within the alteration selvedges of Au mineralized quartz veins at Regnault. To date, the style of mineralization identified is very different between Regnault and the Troilus Au-Cu deposit. The Troilus deposit is characterized by low grade, bulk tonnage, disseminated sulphides (chalcopyrite, pyrite, and pyrrhotite) with a volumetrically much less significant amount of high-grade quartz veins. To date at Regnault, high grade quartz veins ranging from a few centimeters to 10's of meters of stockwork along core length have been the dominant style of mineralization encountered, with only a few locations of significant lower grade gold mineralization. Despite some similarities between the two deposit areas, and the differences, it is not currently understood whether or not the Regnault target area is related to an Archean porphyry system (or epithermal component of). However the timing of Au mineralization is suspected to be syn-late volcanism and magmatism and predeformation which would suggest against a classis orogenic genesis.

9.0 EXPLORATION

In 2018 and 2019, Kenorland has been exploring the Frotet project by collecting till samples (1 kg) for analysis of the fine fraction.

Anomalous areas arising from this systematic till survey are detailed above under section 7.3.1. These have been followed up in 2019 with more detailed geochemical sampling.

In 2019, exploration focused on four main areas over the property where 3,570 till samples and 568 rock samples were collected. In addition to this, 62 samples of C-horizon till (15kg samples), and 362 samples were collected for pebble logging in areas where outcrop was sparse. Geological mapping and structural analysis were completed over large portions of the property, as well as a detailed helicopter supported airborne magnetic survey, acquisition of LIDAR data and aerial imagery. A follow-up high resolution drone supported airborne magnetic survey was conducted over the Regnault target area.

As of August 2020, the work completed in 2020 has included the acquisition of a ground Induced Polarization survey, and diamond drilling of 23 drill holes totaling 7,822.10m at the Regnault target. In addition; a heliborne magnetic survey, 963 B-horizon till samples and 32 rock samples have been collected over the recently acquired mining titles from O3 Mining, and infill till sampling at the Cressida target area.

The work completed is described in the following sections based on sample medium collected and survey or programs conducted. The drilling will be described in Section 10.0 of this report.

9.1 LIDAR, AERIAL IMAGERY and SURFICIAL GEOLOGY

Lidar Survey

In 2019 aerial Lidar data was acquired from two areas covering the Frotet Property and totaling 407 km² by XEOS Imaging Inc at the request of Kenorland. The LiDAR capture was at a point density 4 points/m²; a relative adjustment was performed on the data. Data's relative accuracy is within 10cm at 95% confidence. No absolute adjustment was performed.

The Lidar data was utilized to confirm and increase the confidence of the surficial geology interpretations which were compiled from Québec eco forestry maps. Planning and interpretation of the regional till sampling programs utilized these data sets for suitable material to be sampled, and determination of possible transport distance (glacial till deposits compared to glaciofluvial deposits). Figure 9-1 illustrates the portion of the property where Lidar data was acquired.



Figure 9-1: Map showing the extent of the aerial Lidar data acquired in 2019 (red outline).

Aerial Photographs

High-resolution air photos were acquired from the Quebec government covering that areas that will were the focus of the 2019 exploration program. The air photos combined with the Lidar data aided in the interpretation of the surficial geology, a fundamental principal in which Kenorland exploration was based upon.

The aerial imagery also helped with field program planning and logistics by identify areas with outcrop and concentrated boulder fields, as well as identifying landing zones for helicopters, and underwater obstructions in shallow water for navigating in lakes with boats.

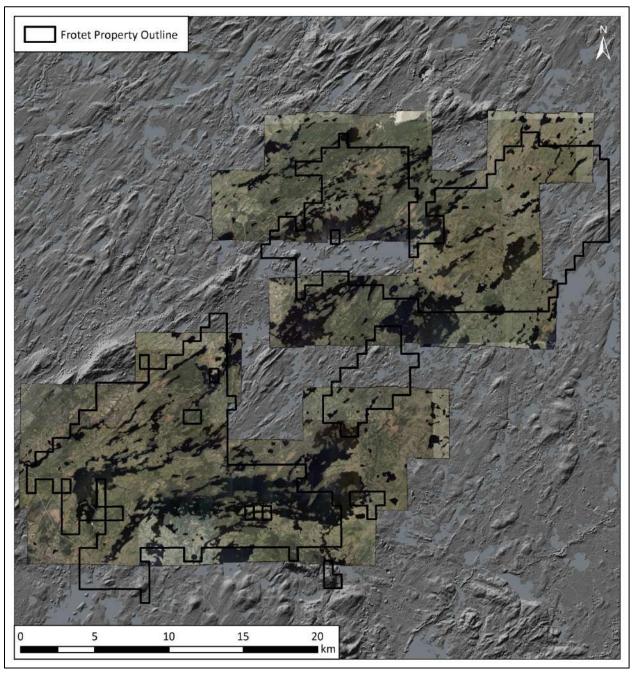


Figure 9-2: Map showing the location of the high resolution aerial photographs acquired in 2019.

Detailed surficial geology maps have been compiled from the Québec eco forestry maps. The Lidar data and aerial imagery have been utilized to confirm the surficial deposit types and geomorphology of the Frotet property. Subsequent planning and interpretation of surface geochemical results has been based

on these data sets. Figure 9-3 displays the compiled surficial geology data and illustrates that the majority of the Frotet property is covered till material, suitable for surface dirft exploration.

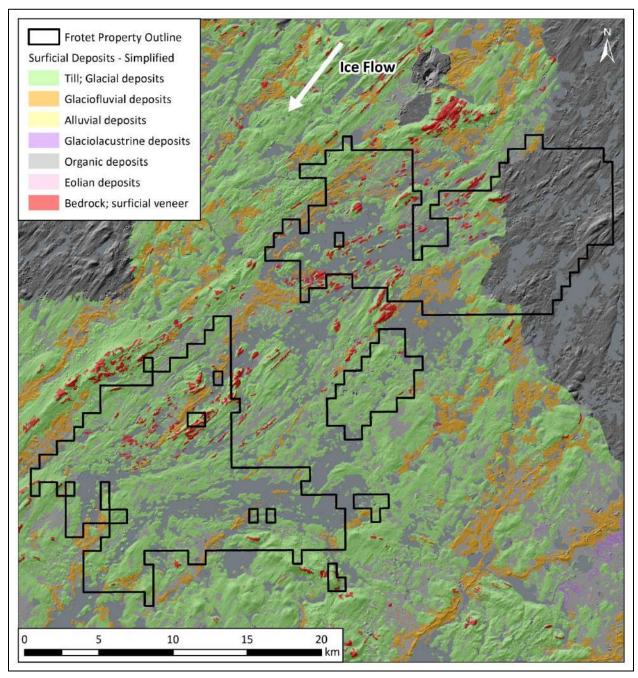


Figure 9-3: Surficial geology map of the Frotet property, compiled from Québec eco forestry maps.

9.2 TILL, PEBBLE and ROCK SAMPLING

Till Sampling (1 kg).

Between 2018 and 2020, a number of 6,697 till samples (1 kg) have been collected on the Frotet project in collaboration with SL Exploration inc and Inlandsis Consultants senc. The first major field program in 2018 focused on collecting 2 258 Till samples covering the entire Frotet land package at the time (Charbonneau and Gallardo Valade 2018.

At some sample stations where the till profile was not well developed, or too thick, C and A-horizon samples were collected. Access across the property utilized trucks along existing logging roads, boats for areas around Lac Frotet and Lac Troilus, and helicopters for the remaining portions where surface travel was too great for efficient logistics. Figure 9-4 illustrates the till sampling coverage over the Frotet project by year of data collected.

Utilizing the known southwestern ice flow direction, till sampling was designed along lines perpendicular to flow direction to identify anomalism in the down ice dispersion from any mineralized bedrock sources. In 2018 sampling occurred along 1,500m spaced lines, and 150m spaced stations to conduct an initial screening of the entire Frotet land package. Infill sampling in 2019 was generally completed at 250m spaced lines, with 150m spaced stations, with addition and tighter density of sampling covering the Regnault target area. Till sample spacing in 2020 over the O3 Mining claims was conducted at 125m spaced lines, and 100m spaced stations. Sampling was completed at a tight spacing over this area to determine if a secondary bedrock source may be identified, within the till dispersion of the known Regnault bedrock mineralization.

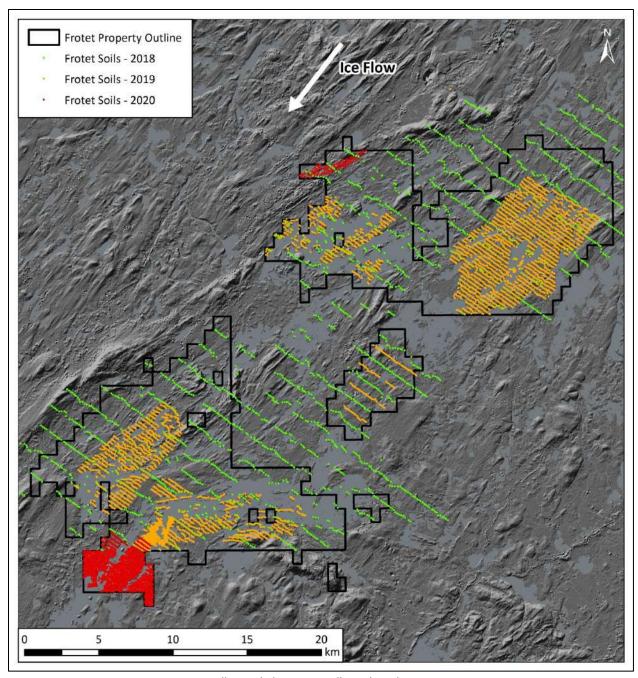


Figure 9-4: Till sample locations collected on the Frotet Project.

Till 15 kg sampling

In 2018, IOS Geoscientific was contracted to perform reconnaissance C-horizon till sampling in selected anomalous areas from the till sampling program. The goal of this program was to determine if the trace element chemistry of individual gold grains could be used to differentiate dispersion trains derived from separate bedrock sources. This methodology has been applied to placer mining districts to determine if there are multiple sources that are contributing to the overall gold endowment of the districts (Knight et

al., 1999). In addition to the gold grain chemistry, indicator minerals and gold grains were counted using an automated SEM methodology and gold grains were classified based on morphology.

25 samples were collected using a small backhoe and shovels by a team of 3 samplers. Sample weight was generally 10kg in order to make a fine fraction heavy mineral concentrate using IOS's proprietary fluidized bed methodology. Sample locations were recorded with handheld Garmin GPS and sample descriptions logged on notepads.

The 2019 till survey of 62 samples followed up on specific high anomalous Au, W, Te, Sb anomalies from the 2018 till survey and covered zones where surficial mapping of Québec eco forestry maps indicated the presence of till material. The campaign was conducted along NW-SE oriented sampling lines spaced at 500m with 250m stations in the Lac LaFourche area, in the northern part of the Property, while spacing was tighter in the Lac Regnault area with a 200m spacing between samples and a 250m line spacing (Figure 9-5).

The till samples were mostly collected in the C-horizon at depth of 50-100 cm using a hand shovel. About 15kg of till matrix was placed in pre-numbered rice bags. Locations were obtained from handheld Garmin GPS and Motorola Android cellphones with the application Fulcrum were used to register descriptions of the sample deposits, local field conditions, coordinates and pictures of said samples and its environment.

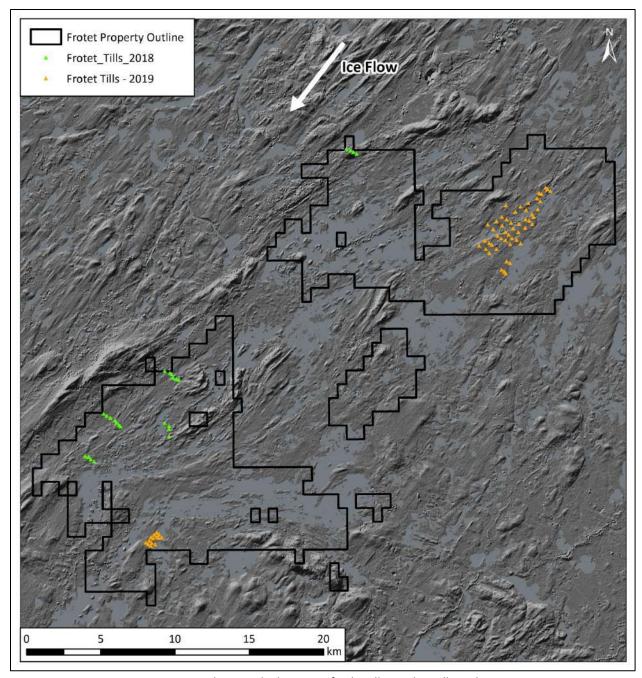


Figure 9-5: Map showing the location of 15kg till samples collected in 2019.

Glacial Pebble Sampling

Pebble sampling was done when no boulders or outcrops could be found. The 2019 campaign was generally completed at 150m stations along NW-SE oriented sampling lines spaced at 1000m (Figure 9-6). Access was done by helicopter, boat and truck.

The pebbles samples were mostly collected in the C-horizon at depth of 50-100 cm using a hand shovel. Samples were sieved with a 4mm sieve or manually by hand. Clasts of > 40mm diameter were hand

sorted using the hammer's handle bottom diameter as a common scale for all teams. About 3kg of this 4-40mm size fraction was placed in pre-numbered poly transparent bags. Locations were obtained from handheld Garmin GPS and Motorola Android cellphones with the application Fulcrum were used to register descriptions of the sample deposits, local field conditions, coordinates and pictures of said samples and its environment.

The pebble samples were shipped to IOS Geoscientifiques for preparation. They were washed with oxalic acid in order to remove clay and silt coating of the glacial clasts. The prepped samples were then shipped to a laboratory for SWIR scanning with a COREScan method.

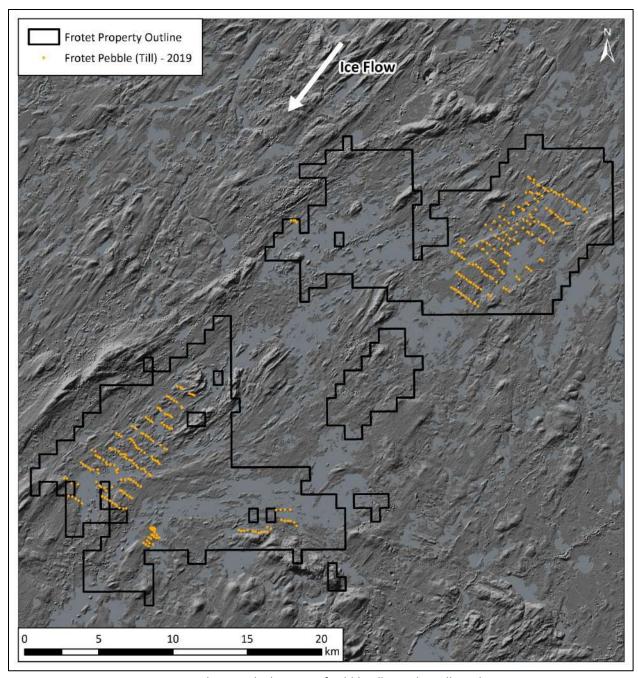


Figure 9-6: Map showing the location of pebble till samples collected in 2019.

Rock Sampling

Rocks have been sampled from both boulders and from outcrop during several reconnaissance style prospecting surveys, and regional to target area mapping campaigns between 2018 and 2020. The rock samples were taken using a 3 to 4 lb rock hammer and a chisel if required. About 1kg of each sample point was placed in pre-numbered poly transparent bags. Locations were obtained from handheld Garmin GPS and Motorola Android cellphones with the application Fulcrum were used to register

descriptions of the sample lithological characteristics, mineralization, size, local field conditions, coordinates and pictures of said samples and its environment.

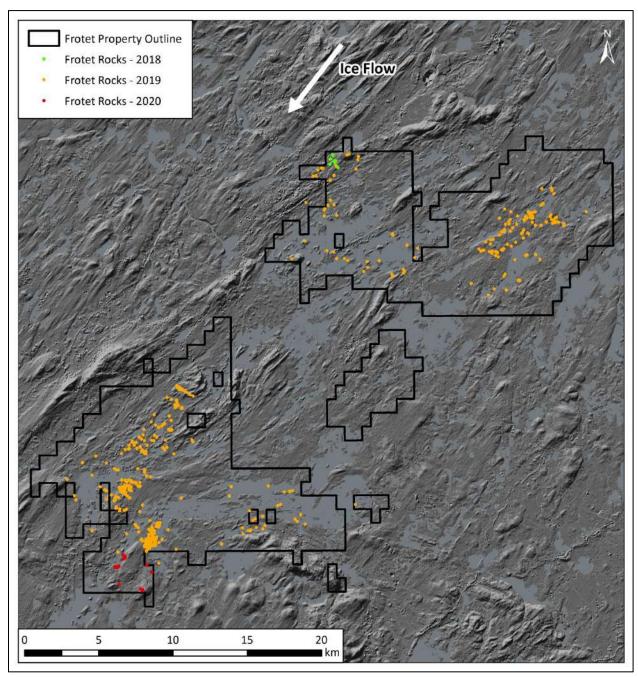


Figure 9-7: Map showing the location of rock samples collected in 2019.

In total, 612 rock samples have been submitted for geochemical analysis, of which 125 samples have been submitted for lithogeochemical analysis. All samples have been analyzed by Bureau Veritas Labs. Several boulders and grab samples from the Regnault Target returned elevated gold values from 5 to 10 ppm Au (Figure 9-14)

9.3 BEDROCK MAPPING

Based on the results of the 2018 till sampling program 13 geochemically anomalous areas within the Frotet property were identified, 9 were recommended for follow-up work (*Kenorland 2018 Annual Report - Frotet*). The areas with the highest potential were Regnault, La Fourche and Chatillon; areas with moderate potential included Troilus, Sable, Island, NE Frotet, Frotet, and Cressida (*Kenorland 2018 Annual Report - Frotet*). During the 2019 field program, property scale bedrock mapping was completed for the six following areas: Chatillon, Regnault, Frotet, Troilus, Cressida and La Fourche (*Figure 9-8*).

Geologic mapping was completed at the regional to target scale in order to complete a geologic interpretations leading into drill targeting. Mapping was able to identify rock units and possible structures which were responsible for the geochemical anomalies, including the Regnault target area where diorite-gabbro was identified to be the main host rock to mineralized quartz veins.

Outcrops are sparse through much of the property, the LIDAR data and aerial imagery were used to identify possible outcrops and also helped delineate boulder fields. Traverses were also largely guided by the regional SIGEOM geology map (2019), as well as by magnetometry. Field techniques to uncover outcrops included scouting lake shores from boat or helicopter, rolling up moss mats to expose bedrock surfaces, and following trails of boulders towards topographic features imaged on LIDAR or air photos. Digitized historical outcrops compiled from various sources (assessment reports sourced from SIGEOM) were also reviewed. Contacts were rarely mapped, but were inferred on the basis of magnetic imagery or LIDAR.

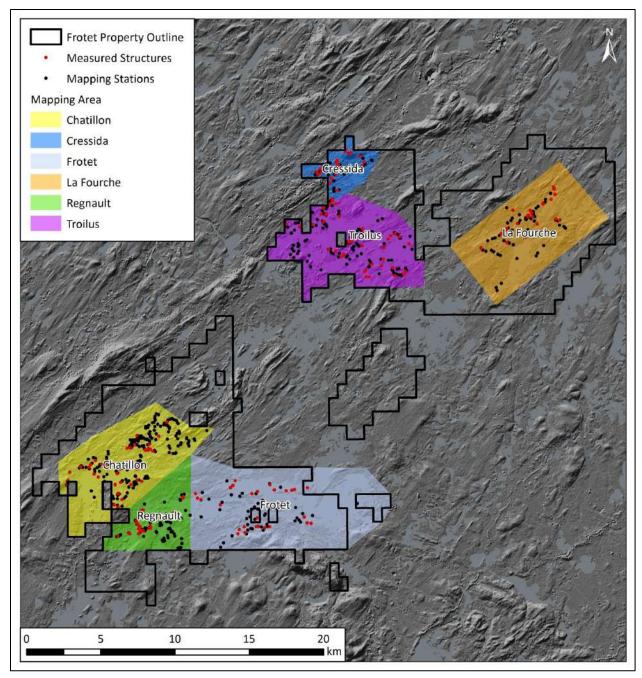


Figure 9-8: Target areas and location of 2019 mapping program.

Field data were collected on iPad, using the GIS Pro application. The application was set up to specifically address the needs of this project in terms of lithology and alteration mapping. Field units were attributed for each outcrop using a rock type qualifier (1 to 15) followed by a textural and/or compositional suffix (*Table 9-1*). Photographs were attached to each station or structural measurements.

hornblende-phyric pyroxene-phyric biotite-phyric amphibole-phyric

Table 9-1: Lithology codes for field data collection on the Frotet property

V	OLCANIC ROCKS		GRANITOID ROCKS		M	IAFIC/ULTRAMAFIC INTRUSIVE		CLASTIC SEDIMENTARY ROCKS			CHEMICAL SEDIMENTARY ROCKS
	LITHOFA CIES	_	LITHOFACIES	_	_	LITHOFACIES	. –	LITHOFACIES			LITHOFACIES
F	massive flow	R	granite		G	Gabbro	N	1 mudstone		0	oxide dominant
Р	pillowed	Ç	granodiorite		U	Dunite	s	siltstone		J	silicate dominant
В	volcanic breccia	٧	tonalite/trondhjemite		Р	Pyroxenite	v	/ wacke/arenite		L	carbonate dominant
Α	ash tuff	Υ	monzonite, quartz monzonite				E	conglomerate		N	sulphide dominant
С	crystal tuff	Х	monzodiorite, quartz monzodiorite			TEXTURE	В	breccia		Z	chert dominant
L	lapilli tuff	D	diorite and quarz diorite		р	porphyritic					
Т	tuff breccia	K	syenite and allied rocks		g	glomerophyric		TEXTURE			TEXTURE
		_			f	aphanitic/fine-grained	е	polymictic/heterolithic	•	e	heterolithic
	TEXTURE		TEXTURE		х	xenolithic	i	monomictic/monolithic	•	d	breccia
р	porphyritic	р	porphyritic		s	spinifex	z	clast-supported		t	thinly bedded (<10cm)
С	amygdaloidal	f	aphanitic/fine-grained		С	cumulate	у	matrix-supported		n	medium bedded (10-30cm)
٧	variolitic	х	xenolithic				t	thinly bedded (<10cm)		r	thickly bedded (>30cm)
е	heterolithic/polymictic						n	medium bedded (10-30cm)		b	thinly laminated (zebra rock, <5cm)
i	monolithic/monomictic		PHYRIC PHASES				r	thickly bedded (>30cm)		j	interbedded clastic sedimentary rocks (<30%)
z	clast-supported	О	plagioclase-phyric			VEIN	v	very thickly bedded (>100cm)		m	magnetite/ilmenite bearing
У	matrix-supported	k	kspar-phyric							р	sulphide bearing
f	aphanitic/fine-grained	q	quartz-phyric		q	quartz			-		
	_	n	magnetite-phyric		С	carbonate					
	PHYRIC PHASES	h	hornblende-phyric		а	sulphide bearing					
o	plagioclase-phyric	u	pyroxene-phyric		t	tourmaline bearing					
k	kspar-phyric	b	biotite-phyric		h	chlorite bearing					
q	quartz-phyric	a	amphibole-phyric		х	wallrock septa					
m	magnetite-phyric	_	-	_	_	•	•				

Around 80 traverses were completed over the course of the 2019 field program covering an area of ~250 km². Altogether, 760 stations were mapped and 264 structures were measured. The existing regional geology map (SIGEOM 2019) was used as a basis for the 2019 mapping program and in general was found to be accurate despite the low number of outcrops in the region (less than 1% of the mapped area). Better resolution magnetometry and LIDAR survey completed by Kenorland Minerals in 2019 allowed for some refining of the units and structural domains. Section 7.0 of this report has described the geological data and results which were obtained from the mapping program

Map interpretation and digitizing was completed on ArcMap, by compiling and integrating several field datasets and remote sensing imagery. A first-pass digitized map was completed using point datasets collected from the field such as mapping stations and structures that were then integrated with LIDAR imagery and magnetometry. This first pass relied upon field interpretations and observations, but was limited by the fact that rock exposure is less than 1% over the property. In most cases, contacts (stratigraphic or intrusive) or structures were interpreted based on the geometric constraints and crosscutting relationships displayed on magnetic or LIDAR imagery. The regional geology map (SIGEOM 2019) was also used as a main compilation source to define regional-scale structural and lithological boundaries. The higher resolution magnetometry and LIDAR data acquired by Kenorland Minerals as part of this program improved the resolution of the regional mapping. Table 9-2 describes the datasets used in the target area geological map, and new geology maps are provided for the anomalous areas La Fourche, Troilus, Cressida, Chatillon, Regnault and Frotet below.

Table 9-2: Summary of datasets generated during the 2019 field mapping program.

Dataset	Content	Source	Comment
Field Stations	Includes Station ID, Rock type, Lithology code, Geologist name, Coordinates, Complete station descriptions, Photo numbers, and information related to the metamorphic grade, strain intensity, alteration, and mineralization	Data collected by mappers using GISpro application on Ipads. Data exported from Ipads as SHP or CSV files, and compiled as a single file.	Minor edits were done on raw data extracted from Ipads to fix typos and compile complete station descriptions
Structures	Includes Station ID, Coordinates, Strike, Dip or Azimuth, Plunge, Confidence rating, Structure type, Geologist, Map area, Photo number, and details related to veins	Data collected by mappers using GISpro application on Ipads. Data exported from Ipads as SHP files, and compiled as a single file.	
Samples	Includes Station ID, Sample ID (tag number), Coordinates, Type of analysis, Rice bag number, LithCode (sample), LithCode (station), a sample description or the outcrop description	Field data collected by mappers using GISpro application on Ipads. Data exported from Ipads as SHP files, and compiled as a single file.	Sample description not always available, outcrop description used as default
Lithogeochemistry	Multielement analytical results (major and trace) for each sample	Lab certificates TIM19002044 (whole rock), TIM19002046 (fire assay)	
Centroids	Description of the different map units, identified by a LithCode	Compiled by EB and CD during the process of map digitizing on ArcGIS	
Linework (property scale)	Contacts and structures for the 6 target map areas covered by mapping during the 2019 field season within the Frotet property boundary	Linework was interpreted by CD and EB based on field observations, magnetic imagery and LIDAR	ContactsMerged layer in Arc GDB
Linework (regional scale)	Contacts and structures at a regional scale providing context to the geology of the Frotet property	Linework compiled by CD and EB using SIGEOM original map interpretation, integrated with new interpretations from target map areas and regional magnetometry	RegionalContacts layer in Arc GDB

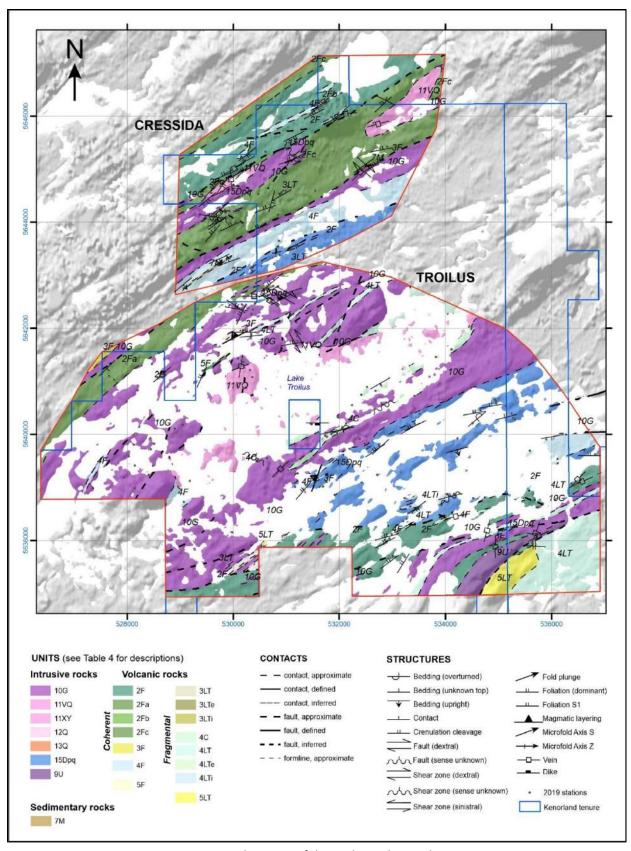


Figure 9-9: Geology map of the Troilus and Cressida areas.

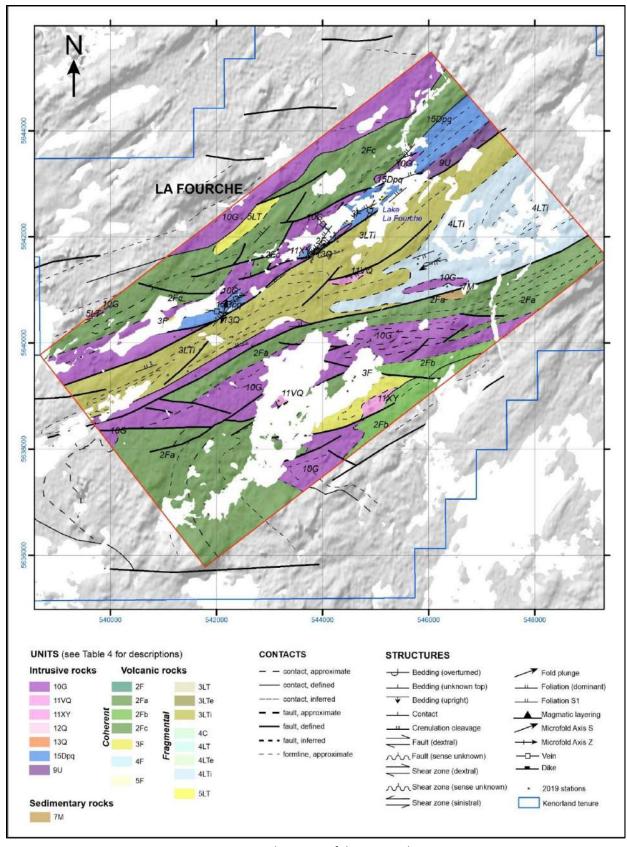


Figure 9-10: Geology map of the La Fourche area.

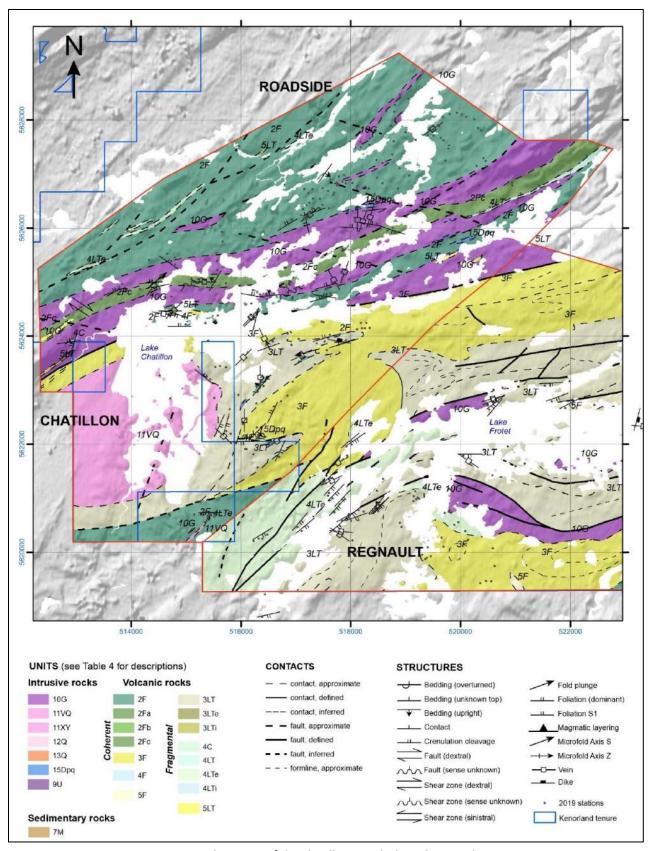


Figure 9-11: Geology map of the Chatillon, Roadside and Regnault areas.

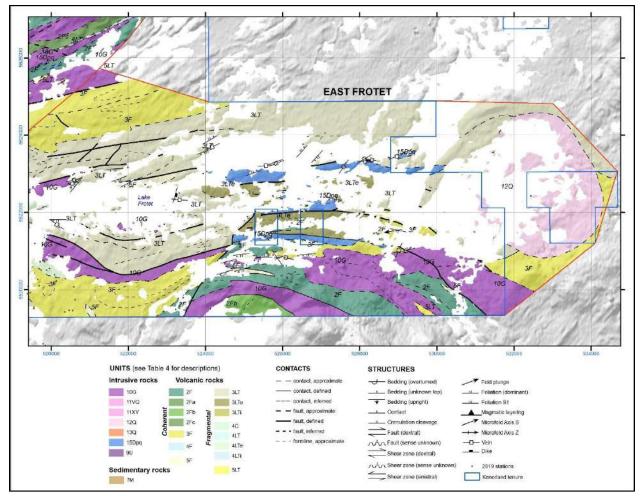


Figure 9-12: Geology map of Frotet anomalous areas.

9.4 GEOPHYSICAL SURVEYS

Airborne Magnetic Surveys

Three separate airborne magnetic surveys have been completed of the Frotet project between 2019 and 2020. The largest, completed in February 2019 was composed of two blocks covering the northern and southern claim blocks which comprise the Frotet project. Prospectair conducted a heliborne high-resolution magnetic (MAG) survey with traverse lines at 50m spacing and control lines spaced every 1,000m. The survey lines were oriented with an azimuth of 135°. The control lines were oriented perpendicular to traverse lines. The average height above ground of the helicopter was 40 m and the magnetic sensor was at 19 m. The flight lines (orange) covering the Frotet property is illustrated in Figure 9-13.

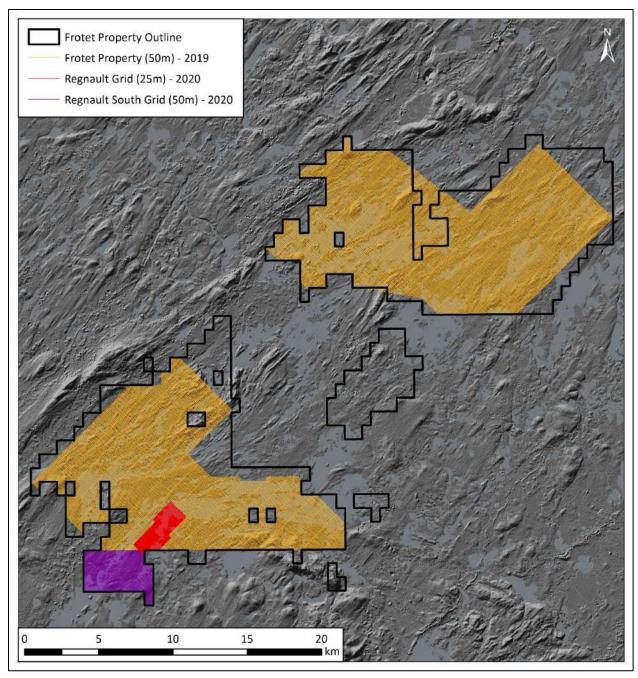


Figure 9-13: Map showing the flight lines of airborne magnetic surveys by grid.

A detailed magnetic survey (UAV-MAGTM) was completed in January 2020 over the Regnault target area by Pioneer Aerial Surveys Ltd. using an Unmanned Aerial Vehicle (UAV). The survey was completed with traverse lines at 25m spacing and control lines spaced every 300m. The survey lines were oriented with an azimuth of 135° to match the survey lines of the 2019 property wide survey. The nominal sensor altitude above ground level (AGL) was set to 25m for the survey. The flight lines (red) covering the Regnault target area is illustrated in Figure 9-13. As part of the

processing of this data, a 3D inversion was completed which delivered a UBC model for the Regnault target area.

After the definitive purchase agreement with O3 Mining was signed, Kenorland completed a magnetic survey on the newly acquired claims (purple grid in Figure 9-13). Geo Data Solutions (GDS) Inc. completed the heliborne supported survey with traverse lines at 50m spacing and control lines at 500m spacing. Flights lines matched the previous surveys, completed at an azimuth of 135°, with minimum ground clearance of 35m.

Ground IP Survey

In December 2019, a ground IP survey was completed over the Regnault target area. Abitibi Geophysics Inc. completed the OreVision Induced Polarization survey at 200m spaced lines with three tie lines spaced 400m apart (Figure 9-14). The survey was completed during the winter as much of the target area lies underneath Lac Regnault. 2D inversions were completed for all sections and tie lines, as well as two 3D inversions were calculated; one by Abitibi Geophysics (Geosoft voxel model for chargeability and resistivity) and one by Computational Geosciences Inc. (UBC model).

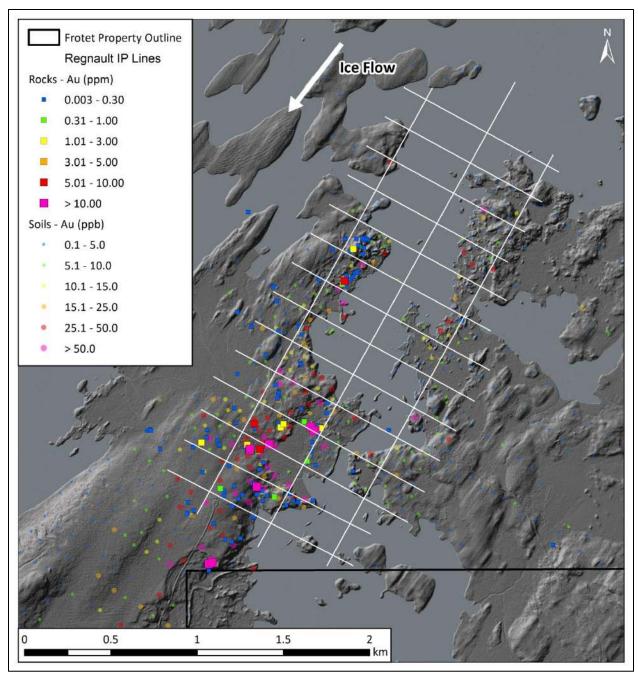


Figure 9-14: Location of the Induced Polarization survey grid over gold results of the Regnault target area. Gold value above 5 ppm were obtained from boulder sampling.

10.0 DRILLING

All of Kenorland's drilling has been concentrated at the Regnault target area which did not have any previous drilling, therefore all historical drilling has been discussed in Section 6.2 of this report and will not be discussed within this section. Kenorland has completed 23 diamond drill holes for 7,822.10m in two phases of drilling; Phase I included 15 drill holes and occurred during February-March 2020, and

Phase II included 8 drill holes and was completed June-July 2020. Drill hole information, and collar data is summarized in Table 10-1.

Table 10-1: Regnault target diamond drill hole information.

Drill Program	Hole ID	Easting	Northing	Elevation	Dip	Azimuth	EOH (m)
	20RDD001	519950	5621303	388.1	-45	332	498.00
	20RDD002	518668	5620085	382.0	-45	179	141.00
	20RDD003	519290	5621065	377.6	-45	124	270.00
	20RDD004	519868	5621163	382.6	-45	309	561.00
	20RDD005	519165	5621028	381.6	-45	333	303.00
	20RDD006	519100	5620814	375.0	-45	271	399.20
Phase I:	20RDD007	519535	5620698	375.0	-45	301	492.00
Winter 2020	20RDD008	518928	5620584	377.0	-45	114	447.00
VIIITEI 2020	20RDD009	519877	5620907	380.6	-45	258	264.00
	20RDD010	518864	5620455	378.7	-45	180	447.00
	20RDD011	519624	5620304	374.3	-45	259	261.00
	20RDD012	519515	5620565	375.9	-45	299	447.00
	20RDD013	519377	5621404	381.8	-45	128	573.00
	20RDD014	519219	5619913	377.1	-45	12	537.00
	20RDD015	518946	5620150	376.1	-55	140	279.41
	20RDD016	519676	5620122	376.0	-45	313	174.00
	20RDD017	518888	5619978	375.0	-45	333	306.00
	20RDD018	518515	5620082	384.0	-45	157	225.00
Phase II:	20RDD019	519050	5619863	375.0	-47	142	285.00
Summer	20RDD020	518700	5619675	378.0	-48	328	257.44
2020	20RDD021	519192	5620915	376.0	-45	299	13.05
	20RDD021A	519192	5620915	376.0	-45	299	174.00
	20RDD022	519517	5620677	375.0	-65	309	276.00
	20RDD023	519542	5620711	375.0	-50	311	192.00

All drilling to date has been completed from land in the vicinity of Lac Regnault, and conducted by Chibougamau Drilling Ltd. The drill programs were permitted with Intervention permits submitted and approved by the MFFP (*Ministère des Forêts, de la Faune et des Parcs*), and shoreline access CA permits submitted and received by the MDDELC (*Ministère de l'Environnement et de la Lutte Contre les Changements Climatiques*). Figure 10-1 displays the location of the Regnault drilling.

The geological logging of core was supervised and logged by OGQ (*Ordre des Géologues du Québec*) registered geologists who also oversaw the geotechnical logging. Half core samples were cut on site using a core saw, bagged in polyethylene sample bags and secured close with zap straps. QAQC samples were inserted into the sample sequence approximately every 20 samples.

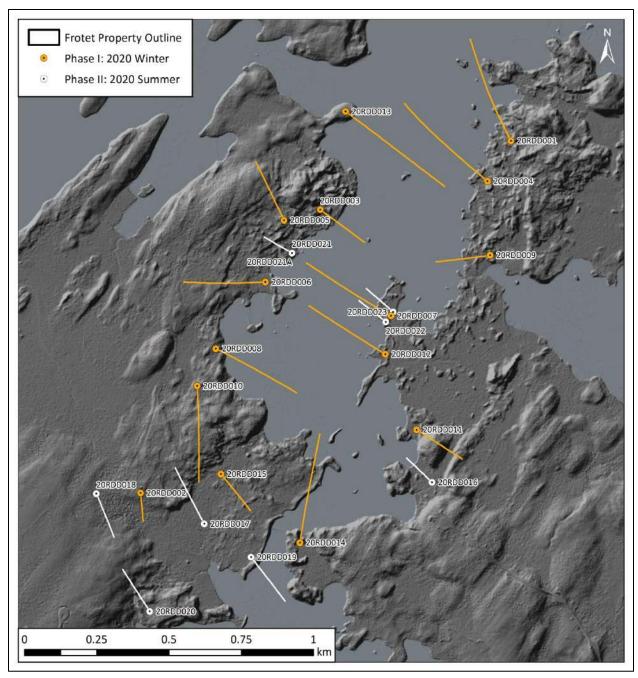


Figure 10-1: Diamond drill hole locations at the Regnault target, completed 2020.

Many of the drill holes have intersected high Au-Ag grade quartz±calcite veins containing pyrite mineralization and occasional visible gold. Some drilling has intersected broad zones of disseminated pyrite which carries low grade gold, but the most significant mineralization intersected to date are narrow (0.2 - 2.0 meters) to very extensive (10's of meters in 20RDD007) quartz±calcite vein structures. The geological data encountered in drilling has been previously discussed in Section 7.3.2 of this report. Significant assays returned from the drilling completed by Kenorland are summarized in Table 10-2.

Table 10-2: Summary of significant Regnault drilling assays.

Hole ID	7.4.5.16	From (m)	To (m)	Length (m)	Au (ppm)	Ag (ppm)
		38.93	39.70	0.77	14.60	18.50
20RDD002	and	49.31	53.06	3.75	16.06	23.00
	incl.	52.30	53.06	0.76	57.00	83.30
		191.80	217.22	25.42	0.27	0.24
20RDD004	and	256.34	258.93	2.59	9.89	10.20
	incl.	257.44	258.93	1.49	15.26	17.28
		72.00	101.08	29.08	8.47	12.23
20RDD007	incl.	89.27	100.40	11.13	18.43	25.93
	and	367.00	369.30	2.30	2.73	2.89
		31.50	33.00	1.50	3.54	6.43
20RDD008	and	151.00	151.36	0.36	25.20	45.30
	and	160.12	160.43	0.31	28.40	15.20
20RDD009		106.00	116.44	10.44	0.83	0.63
		111.67	117.11	5.44	5.94	2.10
20RDD012	incl.	111.67	112.37	0.70	35.30	9.90
	and	212.24	213.46	1.22	6.15	2.52
		295.18	320.62	25.44	0.31	0.39
20RDD014	and	498.59	505.50	6.91	1.98	1.71
	incl.	501.41	501.91	0.50	9.12	9.80
20RDD015		47.57	52.50	4.93	9.59	18.36
20000013	incl.	51.90	52.21	0.31	114.30	237.00
20RDD017		43.73	44.25	0.52	4.55	3.10
20RDD018		93.94	94.38	0.44	7.04	13.00
20000018	and	186.64	187.43	0.79	5.86	14.20
20RDD019		196.06	199.45	3.39	1.13	1.28
20000019	and	219.52	221.45	1.93	6.91	8.61
		129.73	130.80	1.07	12.76	19.51
20RDD020	and	192.82	210.00	17.18	0.91	1.62
	incl.	206.83	207.63	0.80	12.30	22.70
		22.00	23.30	1.30	6.14	4.00
20RDD021A	and	82.90	85.56	2.66	33.69	14.92
	incl.	83.56	84.58	1.02	76.88	33.77
		116.81	124.50	7.69	1.15	0.82
20RDD023	incl.	118.70	120.51	1.81	3.11	1.98
20100023	and	147.48	158.00	10.52	1.55	1.24
	incl.	153.46	158.00	4.54	3.21	2.44

All widths are reported as intersected drill core lengths, and true widths of the mineralized vein structures are not currently understood.

11.0 SAMPLE PREPARATION, ANALYSES, SECURITY

Exploration campaigns undertaken by Kenorland between 2018 and 2020 were overseen by appropriately qualified professional geologists to ensure quality control protocols were in place and followed. All exploration was performed with adequate quality control procedures that generally meet or exceed industry best practices for an exploration stage project.

11.1 SAMPLE PREPARATION and ANALYSES

Till samples (1 kg)

The 1-kilogram till samples were mostly collected from the B-horizon at depth of 30-50 cm using a shovel or a dutch auger depending on year of acquisition. About 1kg of till material was placed in prenumbered synthetic tissue bags. Locations were obtained from handheld Garmin GPS and Motorola Android cellphones with the application Fulcrum were used to register descriptions of the sample deposits, local field conditions, coordinates and pictures of said samples and its environment.

The samples were shipped to Veritas Labs for complete drying at 60°C, sieve up to 100g to -63μm (230 mesh) and multi-element analysis by ICP-MS after partial digestion in aqua regia. The AQ252-EXT analytical package was applied requiring 50g of fines particles. However, some of the samples did not produce a sufficient quantity of fines and were submitted to the ME-MS41L package applied to 0.5 g of fines. The two methods are similar and only differ by the quantity of fine material used for *aqua regia* digestion.

The series of analyte includes 53 elements as follow: Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr with very low detection limits.

Till Samples (15 kg)

Large till samples were mostly collected in the C-horizon at depth of 50-100 cm using a hand shovel. About 15kg of till matrix was placed in pre-numbered rice bags. Locations were obtained from handheld Garmin GPS and Motorola Android cellphones with the application Fulcrum were used to register descriptions of the sample deposits, local field conditions, coordinates and pictures of said samples and its environment. The samples were shipped to IOS Geoscientifiques laboratory for gold grain counting and mineral identification with the ARTGoldTM (Advanced Recovery Technique for gold) package, which consists of concentration, counting and characterization of microns scale gold or PGM grains. The concentration device enables a recovery in excess of 90% on grains down to 5 microns and replaces the conventional shaking table, goldhound spirals, centrifuge or "pans" as used by competition. It produces a super-concentrate, about 300 milligrams.

The super-concentrate is sieved at 50 microns, and the > $50 \mu m$ is check optically, while the < $50 \mu m$ is sent to an electronic microscope. The optical check is done under an apochromatic stereomicroscope at

a magnification up to 106x. Grains are extracted, photographed and identification certified under the electronic microscope.

The fine fraction ($< 50 \, \mu m$) is dusted on a custom holder and check under a Zeiss EVO MA15-HD electron microscope with a backscattered electrons detector. The thoroughly automated routine, based on Oxford Instruments' Aztec platform, scan a mosaic of the holder surface in search of heavy minerals, acquire an EDS-SDD spectrum on detected grains and classify the minerals. Finally, it acquires a high magnification image on the gold and PGM grains for shape classification and measurements, presented in a certificate. The ARTGoldTM technique enables the simultaneous recovery and counting of any minerals denser than about 5 g/cc. A grain analysis is concomitantly obtained for minerals such as scheelite, wolframite, cassiterite, columbotantalite, uranothorite, galena, monazite, barite, cinnabar, sperrylite, merenskyite, isoferropalladium, and PGM alloys.

Rock Samples

Mineralized and non-mineralized rocks were sampled both for assays and lithogeochemical analyses. Rock samples were extracted from outcrops and boulders using hammers and chisels, either as hand samples or chips depending on the nature of the outcrop. Rock samples ranged from ~300g to ~1kg. Most outcrops and some boulders were sampled almost systematically, and analyzed on a daily basis with a portable XRF. The XRF dataset was compiled as the mapping program progressed, and helped to better constrain priority target mapping areas. XRF data was also used for decision making in the selection process of assay samples. The objective of lithogeochemical analyses was to characterize the geochemical signature and tectonic setting of defined map units, possibly supporting new vectors for exploration.

The rock samples were shipped to Veritas Labs with preparation package PRP70-250 (1 kg to \geq 70% passing 2mm - Pulverize 250 g \geq 85% 75µm). Samples were then analyzed with the FA430 package for Au determination by lead Collection Fire Assay with Atomic Absorption Spectroscopy Finish. The detection limit is 0.005 ppm Au with and upper limit of 10 ppm Au. Samples above that limit were automatically analyzed by gravimetric method.

Multi-acid digestion package ICP-ES/MS (MA200) analysis was used to give near total values for most elements. A 0.25 g split is heated in HNO3, HClO4 and HF to fuming and taken to dryness. The residue is dissolved in HCl. The series of analyte includes 53 elements as follow: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr.

Lithogeochemical analysis was also completed by Veritas Labs with the preparation package PRP70-250 (1 kg to \geq 70% passing 2mm - Pulverize 250 g \geq 85% 75 μ m). Samples were then analyzed with the LF202 Total Whole Rock Characterization with AQ200.

Drill Core Samples

All drill core was transported between the drill rigs and core shack by consultants hired by Kenorland. The geological logging of core was performed and supervised by OGQ (Ordre des Géologues du Québec) registered geologists who also oversaw the geotechnical logging. Half core samples were cut on sight using a core saw, bagged in polyethylene sample bags and secured close with zap straps. QAQC samples were inserted into the sample sequence approximately every 20 samples. The samples were then weighed before placed in rice bags ready to be shipped to the Bureau Veritas Lab in Timmins.

The drill core samples were prepared by methods of the PRP70-250 package (1 kg to \geq 70% passing 2mm - Pulverize 250 g \geq 85% 75µm). Samples were then analyzed with the FA430 package for Au determination by lead Collection Fire Assay with Atomic Absorption Spectroscopy Finish. The detection limit is 0.005 ppm Au with and upper limit of 10 ppm Au. Samples which returned Au > 10 ppm or Ag > 200 ppm were automatically analyzed by gravimetric methods (FA530 package).

Multi-acid digestion package ICP-ES/MS (MA200) analysis was used to give near total values for most elements. A 0.25 g split is heated in HNO3, HClO4 and HF to fuming and taken to dryness. The residue is dissolved in HCl. The series of analyte includes 53 elements as follow: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr.

11.2 SECURITY

Throughout the exploration campaigns undertaken by Kenorland, all samples were collected by field personnel hired by Kenorland and were stored and inventoried in enclosed trailers or buildings which were only accessible to Kenorland personnel. Samples were counted and reconciled with the database in order to ensure the number of physical bags was accurate. Sample shipments were prepared, and samples were placed in rice bags, zipped tied closed, and placed on pallets wrapped in shrink wrap for shipping to the respective laboratories.

12.0 DATA VERIFICATION

Recent data have been verified with a particular emphasis of gold grade against lab certificate and no error or inconsistency have been noticed. Otherwise, both Authors have been working with the database for the purpose of report preparation or field verification and no major inconsistency have been found. Claim status and ownership were verified at GESTIM web page maintained by the MRN, accessed by November 25, 2020.

In the Author's opinion, the data used in the present report was acquired by adequate quality control and documentation procedures that generally meet industry best management practices for an exploration- stage project.

A review of the QAQC samples submitted during the drilling campaigns in 2020 was completed. QAQC samples were submitted approximately every 20 samples in the sample series, alternating between standards and blank material. Two sets of standards were used provided by OREAS, a low grade Au standard OREAS 219, and a high grade Au standard OREAS 216b. Results of the laboratory analysis completed by Bureau Veritas labs are illustrated in Figures 12-1 and 12-2. Blanks (BLK-BSS-2020) were also obtained from OREAS for the drill program, and results were reviewed and illustrated in Figure 12-3.

Review of the results indicates that acceptable levels of error were received from Bureau Veritas for the 3 sets of QAQC samples. Only one standard sample of the lower grade OREAS 219 returned a gold value outside of the 2 standard deviations.

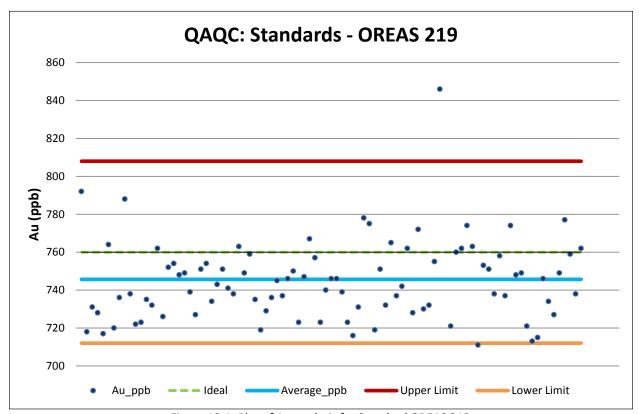


Figure 12-1: Plot of Au analysis for Standard OREAS 219.

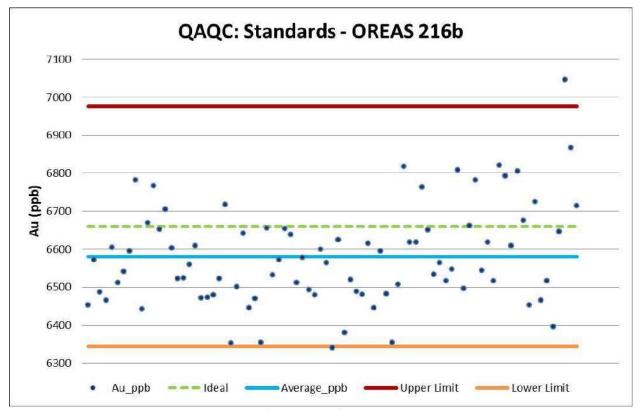


Figure 12-2: Plot of Au analysis for Standard OREAS 216b.

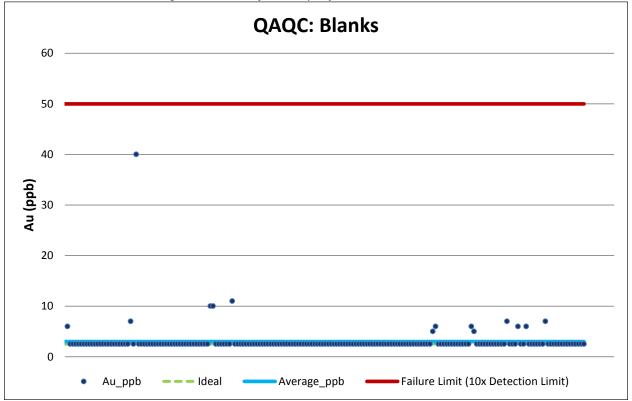


Figure 12-3: Plot of Au analysis for Standard BLK-BSS-2020.

23.0 ADJACENT PROPERTIES

The information provided under this Item cannot be directly verified by the Author's and is not necessarily indicative of the mineralization present on the Frotet Project.

The most prominent land owner within the Frotet-Troilus segment of the belt is Troilus Gold Corp. (Figure 23-1). They are actively exploring the past producing Troilus Au-Cu Mine. Historic production snf current mineral resource estimate including indicated resources and inferred resources are given in a recent press release July 28, 2020) by Troilus Gold. They are actively drilling along the Troilus Mine Trend and recently announced the discovery of the Southwest Zone (Troilus Gold Press Release January 28, 2020) which is located approximately 1.5km north of Kenorland's property boundary.

Urban Gold is the next largest landowner within the belt (Figure 23-1) with several properties which are 100% owned by the group (Cressida, Pallador and Golden Road properties), as well as option agreements for which Urban Gold (50%) and Argonaut Gold (50%) control the Bullseye property. Urban gold has been very active on several of the properties across the belt; consolidating ground adjacent to several existing properties, announcing 22.0m @ 1.02 ppm Au and 33.5m @ 0.49 ppm Au from the Cressida property (Urban Gold Press Release February 4, 2020), announcing high grade surface samples (outcrop and boulders) up to 33.29 ppm Au (Urban Gold Press Release July 22, 2020) and conducting detailed airborne magnetics and planning 2500m of drilling on the Pallador property. This new surface discovery at Pallador is located to the southwest of the Regnault target area, and many samples collected occur within 100m of kenorland's property boundary with Urban Gold.

X-Terra Resources owns 100% of the Troilus East project, which is located to the immediate north of Kenorland's land package (Figure 23-1). The company announced that they completed the first geological reconnaissance and prospecting campaign on the project in June of 2020. Assays were pending according to the press release dated July 2, 2020.

Several other properties exist in the vicinity of the Frotet project, but are mostly small clusters of claims which have been recently acquired once Kenorland has allowed portions of the original land package to lapse once the original regional geochemical screening was completed in 2018 and exploration expenditures were submitted. Figure 23-1 displays all the landowners within the Frotet-Troilus belt.

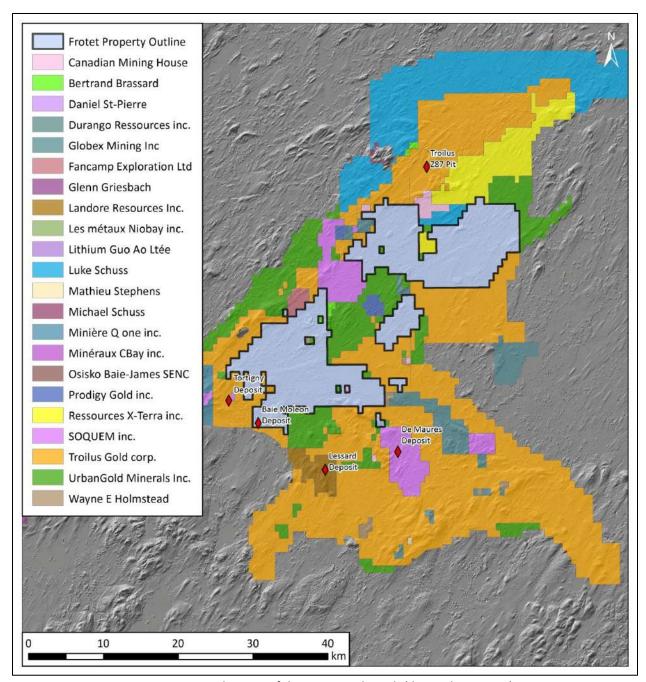


Figure 23-1: Land Tenure of the Frotet-Troilus Belt (date: July 24, 2020).

24.0 OTHER RELEVANT DATA AND INFORMATION

To the best of the Author's knowledge there is no other relevant data and information to be added here, relating to the Frotet project.

25.0 INTERPRETATIONS AND CONCLUSIONS

The Author's interpretations and conclusions are summarized as follows:

Geology

- The Frotet project is located within the eastern Frotet-Troilus segment of the Frotet-Evans greenstone belt, located within the Opatica sub-province of the Archean Superior Province.
- The geology of the Frotet-Troilus segment is dominated by alternating sequences of calc-alkaline to tholeiltic volcanic rocks similar to other greenstone belts in the Superior province, which have been intruded by several syn-volcanic to post deformational intrusive rocks.
- The Regnault target area is hosted within a syn-volcanic granodiorite-diorite-gabbro intrusive complex which is geologically similar to the host rock of the past producing Troilus Mine.

Mineralization

- The most economically important mineralization encountered at Regnault is hosted within quartz±calcite stockwork vein systems that are generally controlled by lithologic contacts within the mostly low strained intrusive complex.
- Pyrite mineralization is the dominant sulphide associated with Au mineralization, commonly in the 1-5% which has been deposited within the stockwork veining and disseminated within the wallrock alteration halo. Sulphide content has rarely been noted to reach 5-10% to date, but has been recognized to correlate with some of the high Au grade returned in drilling. Trace chalcopyrite and galena have also been noted within the highest grade quartz veins.
- Visible gold has been logged in several high grade veins, but many of the highest grade samples (>30.0 ppm) did not have VG observed but did correlate well with high sulphide content. The significance of any nugget effect is not currently known at this time.

Exploration

- The discovery of mineralization at Regnault has made by systematic exploration from regional sampling over prospective geologic terranes to detailed follow-up of specific targets.
- Exploration work has highlighted several target areas which warrant follow-up programs. The regional targets are considered very early stage, and would require additional surface exploration efforts to define possible drill targets.
- Diamond drilling at Regnault has intersected significant Au-Ag mineralization over an area of 1900x500m and demonstrates excellent potential.

QAQC

The QC programs employed during exploration on this project were overseen by appropriately
qualified professional geologists using adequate quality control procedures that meet or exceed
industry best practices for an exploration stage property.

Potential Risks and Uncertainties

Apart from the inherent risk of finding only low or discontinuous additional gold mineralisation, and unfavorable metallurgy, other important risks includes:

- a marked lowering in gold price
- introduction of new regulations

Although inherent risks or new regulation may be crucial regarding the future of the project, gold price presents a cyclic character which may only delayed the advancement of the projet.

26.0 RECOMMENDATIONS

Based on the encouraging results obtained to date, including the regional target till geochemical anomalism and the significant Au-Ag mineralization intersected in drilling at the Regnault target, the authors recommend continuing the exploration effort on the Frotet Gold project. We recommended to complete additional ground Induced Polarization surveying, detailed surface geochemical sampling (till (gold grains) and boulder prospecting) and diamond drilling at the Regnault target. Additional regional exploration should be completed in order to maintain good standing and complete required exploration expenditures on mining titles that have be identified as being prospective.

Accordingly, a first, non-contingent phase of work with a C\$1,056,000 budget is proposed (Table 26.1). This program includes the biennial mining title renewal fees for the current Frotet property, and management fee paid to Kenorland for operating the proposed program. Exploration works include IP geophysics composed of two components; infill line spacing from the current 200m spaced lines down to 50m spaced lines, and extend the survey grid towards the southwest to cover additional prospective ground. Also, 3D inversions of chargeability should be completed to identity moderate chargeability anomalies (9-12 msec) which correlate with magnetic lineaments for drill targeting. Geological interpretation of these results should refine drill targets for the Phase II work program.

A Phase II of exploration contingent on the favourable results of Phase I is recommended with a C\$2,746,800 budget, this work program consists of an additional 9 000 m of diamond drilling at the Regnault target. Portions of this program should be step-out drilling from the more significant mineralization encountered to date utilizing the newly acquired IP data for targeting, with the remainder of meters budgeted should be designated to test additional targets, specifically to the south and southwest of the current drilling.

A total budget of \$3.8M is recommended for both Phase I and II work programs, as this would be the required amount for SMMCL to complete Phase 2 under the option agreement. This budget would include the biennial mining title renewal fees for the current Frotet property, and management fee paid to Kenorland for operating the proposed program. A summary of the cost breakdown is presented in Table 26-1.

Table 26-1: Recommended work program budget.

Recommended Frotet Program Budget								
Phase 1 Work Program								
Mining Title Renewal Fees	\$50,000							
Camp Construction	\$300,000							
Ground IP Survey	\$470,000							
Surface Exploration								
Personnel / Operations	\$40,000							
Geochemical Analysis	\$20,000							
Contingency (10%)	\$88,000							
Management Fee (10%)	\$88,000							
Total for Phase I	\$1,056,000							
Phase 2 Work Program – Diamond Drilli	ng (9,000m)							
Drilling	\$874,000							
Drill Support/Operations	\$300,000							
Geochemical Analysis	\$300,000							
Personnel	\$815,000							
Contingency (10%)	\$228,900							
Management Fee (10%)	\$228,900							
Total for Phase II \$2,746,80								
Total for Phase I and II \$3,802,800								

27.0 REFERENCES

- ALLARD, M. 1997. RAPPORT SUR UN LEVE ELECTROMAGNETIQUE TBF, PROJET ROBERT 2 (459), SECTEUR DE FROTET-TROILUS. MINES ET EXPLORATION NORANDA INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 54969, 12 PAGES ET 2 PLANS.
- ASBURY, B., BEREZOWSKY, M., DOWNIE, I F., HUTTON, D A., MCNUTT, A., PALMER, M., PEACOCK, G., WOOD, N. 1974. COMPILATION OF WORK, JUNE 1971 TO MARCH 31ST, 1974, MAURES PROJECT. SELCO MINING CORP LTD, S D B J. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 34060, 71 PAGES ET 49 PLANS.
- AUGER, C C., BROUSSEAU, K. 2018. COMPILATION REPORT ON THE NORTHEAST PORTION OF THE TROILUS-TORTIGNY PROPERTY. RESSOURCES BEAUFIELD INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 70562, 251 PAGES.
- BEAUMIER, M., KIROUAC, F. 1995. SERIE DE CARTES GEOCHIMIQUES COULEUR. ECHANTILLONNAGE DES SEDIMENTS DE LAC. REGION DU LAC ASSINICA. SNRC 32J. MRN. MB 95-31, 31 PAGES.
- BEAUREGARD, A J., GAUDREAULT, D. 1992. REPORT ON A DETAILED GEOLOGICAL SURVEY AND BEEP-MAT RECONNAISSANCE SURVEY, PROJECT 474-A (FROTET A). PLACER DOME INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 51959, 151 PAGES ET 3 PLANS.
- BELLAVANCE, Y. 1999. RAPPORT ANNUEL D'EXPLORATION 1998, PROPRIETE TROILUS FREE GOLD. SOQUEM INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 56501, 68 PAGES ET 1 PLAN.
- BELLAVANCE, Y. 1999. RAPPORT ANNUEL D'EXPLORATION 1998, SECTEUR FROTET, PROPRIETE MELANIE (1233). SOQUEM INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 56564, 35 PAGES ET 5 PLANS.
- BELLAVANCE, Y., PARE, P. 1999. LEVE ELECTROMAGNETIQUE (EMH), PROPRIETE ROMEO BOISVERT (1275). CLAIMS FRIGON. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 56807, 34 PAGES ET 9 PLANS.
- BERTRAND, C. 1978. RAPPORT SUR LA RECHERCHE D'OR, FROTET 1978. S D B J. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 38185, 20 PAGES ET 3 PLANS.
- BOILEAU, P., LORTIE, P. 1995. LEVE PULSE-EM EN FORAGE, PROPRIETE TROILUS- SUD, SECTEUR DU LAC TROILUS. CORPORATION MINIERE INMET- DIVISION EXPLORATION. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 53904, 14 PAGES ET 13 PLANS.
- BOILY, M., DION, C., 2002, GEOCHEMISTRY OF BONINITE-TYPE VOLCANIC ROCKS IN THE FROTET-EVANS GREENSTONE BELT, OPATICA SUBPROVINCE, QUEBEC: IMPLICATIONS FOR THE EVOLUTION OF ARCHEAN GREENSTONE BELTS. PRECAMBRIAN RESEARCH, 115, P. 349-371.
- BOILEAU, P., TURCOTTE, R. 1994. LEVES GEOPHYSIQUES, PROJET DILEO.

 EXPLORATIONS NORANDA LTEE. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC.

 GM 52555, 14 PAGES ET 40 PLANS.
- CALVERT, A. J., SAWYER, E.W., DAVIS, W. J., LUDDEN, J.N.,1995, ARCHAEAN SUBDUCTION INFERRED FROM SEISMIC IMAGES OF A MANTLE SUTURE IN THE SUPERIOR PROVINCE, NATURE 375, P. 670–674

- CASHIN, P J. 1987. A COMBINED MAGNETOMETER AND VLF-EM GEOPHYSICAL SURVEY, TROILUS EAST PROPERTY. EXPLORATIONS MUSCOCHO LTEE, CLAIMS WAPACHEE. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 45003, 10 PAGES ET 10 PLANS.
- CASTONGUAY, J. 1978. REPORT ON THE FROTET-TROILUS AREA GEOLOGICAL RECONNAISSANCE. SHELL CANADA LTEE. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 39045, 17 PAGES ET 1 PLAN.
- CHAINEY, D., COYLE, T., FEKETE, M., BLACKBURN, M. 1999. RAPPORT DES TRAVAUX EFFECTUES SUR LA PROPRIETE DETENUE DANS LE SECTEUR DU LAC FROTET. CLAIMS FRIGON. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 57504, 45 PAGES ET 7 PLANS.
- CHARBONNEAU R. AND GALLARDO VALADE A., 2018. REGIONAL TILL SAMPLING 2018, FROTET GOLD PROJECT. GM 70901, 2018. 697 PAGES ET 1 PLAN
- CHURCH, S.E., MOSIER, E.L., MOTOOKA, J.M., 1987. MINERALOGICAL BASIS FOR THE INTERPRETATION OF MULTI-ELEMENT (ICP-AES), OXALIC ACID, AND AQUA REGIA PARTIAL DIGESTIONS OF STREAM SEDIMENTS FOR RECONNAISSANCE EXPLORATION GEOCHEMISTRY. JOURNAL OF GEOCHEMICAL EXPLORATION, VOL. 29 (1-3) P.207-233
- CLOUTIER, M A. 1995. RAPPORT D'INTERPRETATION, LEVE D'HUMUS BLOC

 TROILUS NORD, GRILLE SUD. CORPORATION MINIERE INMET-DIVISION EXPLORATION. RAPPORT

 STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 53944, 268 PAGES ET 6 PLANS.
- CUMMINGS, D., KJARSGAARD, B., RUSSELL, H., SHARPE, D., 2011. ESKERS AS MINERAL EXPLORATION TOOLS. EARTH-SCIENCE REVIEWS. 109. 32-43.
- D'AMBOISE, P., FOLCO, P. 2005. RAPPORT D'EXPLORATION 2005, PROPRIETE DILEO-NORD. SOQUEM INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 62265, 79 PAGES ET 4 PLANS.
- DAVIS, W.J., MACHADO, N., GARIEPY, C., SAWYER, E.W., BENN, K., 1995, U-PB GEOCHRONOLOGY OF THE OPATICA TONALITE-GNEISS BELT AND ITS RELATIONSHIP TO THE ABITIBI GREENSTONE BELT, SUPERIOR PROVINCE, QUEBEC. CANADIAN JOURNAL OF EARTH SCIENCES, 32, P.113-127.
- DE CORTA, G., DE CHAVIGNY, P., BERNIER, M A. 2007. RESULTATS D'UNE CAMPAGNE D'ECHANTILLONNAGE D'ESKERS: SECTEUR FROTET TROILUS 32J NORD. TABLE JAMESIENNE DE CONCERTATION MINIERE. MB 2007-01, 31 PAGES.
- DESSUREAULT, M., VERMETTE, D. 1997. RAPPORT SUR LES TRAVAUX D'EXPLORATION 1995-1996, PROPRIETE FROTET (266). MINES ET EXPLORATION NORANDA INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 54793, 164 PAGES ET 7 PLANS.
- DVORAK, Z. 1989. REPORT ON COMBINED HELICOPTER BORNE MAGNETIC, ELECTROMAGNETIC AND VLF SURVEY, DILEO LAKE PROPERTY.

 CANADIAN PATRICIA EXPL LTD, MINES D'OR QUEENSTON LTEE, CLAIMS JONES. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 49439, 37 PAGES ET 10 PLANS.
- FOURNIER, A., LEFEBVRE, F. 2008. CAMPAGNE DE FORAGES AU DIAMANT ET DE DECAPAGES MECANIQUES AU SEIN DU PROJET FROTET-ROBERT. CLAIMS ROBERT. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 63770, 67 PAGES ET 2 PLANS.
- FRAPPIER-RIVARD, D. 2009. REPORT OF EXPLORATION, DRILLING AND RECOMMENDATIONS, OCTOBER 2008 JANUARY 2009 EXPLORATION PROGRAM, TROILUS PROPERTY. RESSOURCES UNIFIEES BEAUFIELD INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 64998, 126 PAGES.

- FRAPPIER-RIVARD, D., LARDERAZ, C., GRANT, J C. 2012. TECHNICAL REPORT OF EXPLORATION AND DRILLING CAMPAIGN, FALL 2011, TROILUS PROPERTY. RESSOURCES UNIFIEES BEAUFIELD INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 67268, 1002 PAGES ET 30 PLANS.
- FRASER, R J. 1985. REPORT ON RECONNAISSANCE GEOLOGICAL MAPPING AND GEOCHEMICAL SAMPLING, LAC LA FOURCE CLAIMS, FROTET-TROILUS PROJECT Q-26. EXPLORATION KERR ADDISON INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 43278, 25 PAGES ET 13 PLANS.
- FRASER, R J. 1986. REPORT ON RECONNAISSANCE GEOLOGICAL MAPPING AND GEOCHEMICAL SAMPLING, FROTET-TROILUS PROJECT. EXPLORATION KERR ADDISON INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 42887, 174 PAGES ET 22 PLANS.
- FRASER, R J., MARTIN, J. 1987. REPORT ON DIAMOND DRILLING PERFORMED ON THE LAC LA FOURCHE CLAIMS, FROTET-TROILUS PROJECT.EXPLORATION KERR ADDISON INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 44392, 43 PAGES ET 3 PLANS.
- FRASER, R J., MARTIN, J. 1988. REPORT ON THE 1988 EXPLORATION PROGRAM, FROTET-TROILUS PROJECT. EXPLORATION KERR ADDISON INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 48246, 709 PAGES ET 49 PLANS.
- GABOURY, D., PEARSON, V. 2008. RHYOLITE GEOCHEMICAL SIGNATURES AND ASSOCIATION WITH VOLCANOGENIC MASSIVE SULFIDE DEPOSITS: EXAMPLES FROM THE ABITIBI BELT, CANADA. ECONOMIC GEOLOGY.
- GAGNON, J F., SCHMITT, L. 2009. RAPPORT D'EXPLORATION, PROPRIETE DILEO- NORD. SOQUEM INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 64207, 505 PAGES ET 10 PLANS.
- GARDOLL, S., 2005, GLOBAL TO LOCAL SCALE GEOGRAPHIC INFORMATION SYSTEM PROCESSING STRATEGIES FOR TARGETING OROGENIC GOLD DEPOSITS. UNPUBLISHED PHD DISSERTATION, UNIVERSITY OF WESTERN AUSTRALIA.
- GAUTHIER, J., LANGSHUR, A. 1986. RAPPORT DE PRESENTATION, PROPRIETE LAC TESTARD. GOLDEN HARVEST EXPLORATION, EXPLORATION MOISSON D'OR INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 45098, 24 PAGES ET 4 PLANS.
- GIRARD, J. 2017. CONCENTRATION ET ANALYSE DE L'OR PROVENANT DE SEDIMENTS GLACIAIRES, PROJET CHEMIN TROILUS. RESSOURCES SPHINX. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 70085, 168 PAGES ET 1 PLAN.
- GIRARD, M J. 1999. RAPPORT DES TRAVAUX DE CARTOGRAPHIE GEOLOGIQUE, PROSPECTION ET DECAPAGE, PROPRIETE MONIQUE. INCO LTEE. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 56629, 151 PAGES ET 11 PLANS.
- GOSSELIN, C. 1996. SYNTHESE GEOLOGIQUE DE LA REGION DE FROTET-TROILUS, ET 96-02.
- GOODMAN, S., WILLIAMS-JONES, A., AND CARLES. P., STRUCTURAL CONTROLS ON THE ARCHEAN TROILUS GOLD-COPPER DEPOSIT, QUEBEC. CANADA. ECON GEOL 2005, V. 100, 577-582
- GROVES, D.I., SANTOSH, M., GOLDFARB, R.J., ZHANG, L., 2018. STRUCTURAL GEOMETRY OF OROGENIC GOLD DEPOSITS: IMPLICATIONS FOR EXPLORATION OF WORLD-CLASS AND GIANT DEPOSITS. GEOSCIENCE FRONTIERS, VOL. 9 (4), P.1163-1177.
- HANNINGTON, M.D., POULSEN, K.H., THOMPSON, J.F.H., AND SILLITOE, R.H., 1999, CHAPTER 14. VOLCANOGENIC GOLD IN THE MASSIVE SULFIDE ENVIRONMENT, IN BARRIE, C.T., AND HANNINGTON, M.D., VOLCANIC-

- ASSOCIATED MASSIVE SULFIDE DEPOSITS: PROCESSES AND EXAMPLES IN MODERN AND ANCIENT SETTINGS: *REVIEWS IN ECONOMIC GEOLOGY*, VOL. 8, P. 319-350.
- HANSEN, N., HANSEN, J E. 2009. GROUND MAGNETIC FIELD SURVEY REPORT ON TROILUS METAL PROJECT.
 RESSOURCES UNIFIEES BEAUFIELD INC.
 RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 64512, 24 PAGES ET 7 PLANS.
- KNIGHT, J.B., MORISON, S.R., MORTENSEN, J.K., 1999. THE RELATIONSHIP BETWEEN PLACER GOLD PARTICALE SHAPE, RIMMING, AND DISTANCE OF FLUVIAL TRANSPORT AS EXEMPLIFIED BY GOLD FROM THE KLONDIE DISTRICIT, YUKON TERRITORY, CANADA. ECONOMIC GEOLOGY, VOL. 94, P. 635-648.
- HUTTON, D.A., 1974. SUMMARY REPORT. LAC MOLEON FALCONBRIDGE OPTION, SELCO MINING CORPORATION, 15P, 2 PLANS.
- LAFOREST, J. 2017. RAPPORT DE TRAVAUX DE PROSPECTION ET D'ECHANTILLONNAGE DE TILL, PROJET CHEMIN TROILUS. RESSOURCES SPHINX LTEE. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 70084, 38 PAGES ET 2 PLANS.
- LAMBERT, G. 1994. RAPPORT SOMMAIRE SUR L'INTERPRETATION DE LEVES DE POLARISATION PROVOQUEE, PROPRIETE FROTET-TROILUS. CORPORATION MINIERE METALL. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 52878, 11 PAGES ET 58 PLANS.
- LAMBERT, G. 1996. RAPPORT SOMMAIRE SUR DES LEVES COMPLEMENTAIRES DE POLARISATION PROVOQUEE, PROJET TROILUS-NORD. CORPORATION MINIERE INMET. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 54197, 12 PAGES ET 45 PLANS.
- LAMBERT, G. 1998. LEVES MAGNETIQUES ET EMH MAXMIN II, PROPRIETE MELANIE (1233). SOQUEM INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 56563, 12 PAGES ET 5 PLANS.
- LEDUC, M.J., 1984, EVALUATION DU POTENTIEL EN MOLYBDENE DE LA PORTION ORIENTALE DE LA CEINTURE DE FROTET-EVANS : GEOCHIMIE DES SEDIMENTS DE RUISSEAU; MRN, MB84-18, 153 P.
- LESHER, C.M., GOODWIN, A.M., CAMPBELL, I.H., AND GORTON, M.P., 1986, TRACE-ELEMENT GEOCHEMISTRY OF ORE-ASSOCIATED AND BARREN, FELSIC METAVOLCANIC ROCKS IN THE SUPERIOR PROVINCE, CANADA: CANADIAN JOURNAL OF EARTH SCIENCES, V. 23, P. 222–237
- LEVESQUE, P., SPEIDEL, F. 1993. RAPPORT DE CARTOGRAPHIE GEOLOGIQUE, PROJET TROILUS SUD. MINNOVA INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 52167, 55 PAGES ET 6 PLANS.
- LORTIE, P. 1992. MAGNETIC (TOTAL FIELD) AND INDUCED POLARIZATION SURVEYS, FROTET A-474 PROJECT.

 PLACER DOME INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 51643, 19
 PAGES ET 72 PLANS.
- MACDONALD, F. 2019. KENORLAND 2019 ANNUAL REPORT FROTET. UNPUBLISHED.
- MAGNAN, M. 1992. RAPPORT DE CARTOGRAPHIE GEOLOGIQUE, PROPRIETE FROTET-TROILUS, BLOC TROILUS NORD (EXTENSION NE). MINNOVA INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 51457, 50 PAGES ET 5 PLANS.
- MAGNAN, M., SPEIDEL, F. 1993. RAPPORT DE CARTOGRAPHIE GEOLOGIQUE, PROJET FROTET-TROILUS, BLOCS TROILUS NORD ET LAC LA FOURCHE. CORPORATION MINIERE METALL. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 52300, 71 PAGES ET 12 PLANS.

- MERCIER-LANGEVIN, P., DUBE, B., HANNINGTON, M., RICHER-LAFLECHE, M., GOSSELIN, G. (2007). THE LARONDE PENNA AU-RICH VOLCANOGENIC MASSIVE SULFIDE DEPOSIT, ABITIBI GREENSTONE BELT, QUEBEC: PART II. LITHOGEOCHEMISTRY AND PALEOTECTONIC SETTING. ECONOMIC GEOLOGY. 102. 611-631.
- MOREAU, A. 2017. TECHNICAL REPORT PERTAINING TO THE TROILUS EAST PROPERTY. RESSOURCES X-TERRA INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 70166, 62 PAGES ET 5 PLANS.
- OTIS, M B. 1985. GEOCHIMIE DES SEDIMENTS DE RUISSEAU REGION DU LAC FROTET. MRN. MB 85-55, 17 PAGES ET 1 PLAN.
- OTIS, M B. 1985B. GEOCHIMIE DES SOLS REGION DU LAC TROILUS. MRN. MB 8544, 48 PAGES ET 1 PLAN.
- PANNETON, G., GAUDREAULT, D., LAMBERT, G. 1993. REPORT ON A DRILL PROGRAM, PROJECT 474 A (FROTET A), FROTET-TROILUS LAKE AREA. PLACER DOME INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 52168, 177 PAGES ET 14 PLANS.
- PELLETIER, M., 2016. THE RAINY RIVER GOLD DEPOSIT, WABIGOON SUBPROVINCE, WESTERN ONTARIO: STYLE, GEOMETRY, TIMING AND STRUCTURAL CONTROLS ON ORE DISTRIBUTION AND GRADES. MEMOIRE. QUEBEC, UNIVERSITE DU QUEBEC, INSTITUT NATIONAL DE LA RECHERCHE SCIENTIFIQUE, MAITRISE EN SCIENCES DE LA TERRE, 404 P.
- PICHE, M. 1995. RAPPORT DE CARTOGRAPHIE GEOLOGIQUE, PROJET TROILUS- SUD. LES EXPLORATIONS MUSCOCHO LTEE, CORPORATION MINIERE INMET. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 53729, 81 PAGES ET 27 PLANS.
- PICHE, M. 1995. RAPPORT DE PROSPECTION GEOLOGIQUE, PROPRIETE FROTET- TROILUS (TROILUS-NORD).

 CORPORATION MINIERE INMET-DIVISION EXPLORATION. RAPPORT STATUTAIRE SOUMIS AU
 GOUVERNEMENT DU QUEBEC. GM 53948, 18 PAGES ET 2 PLANS.
- RAFFLE, K J. 2012. ASSESSMENT REPORT ON THE LEZAI PROPERTY. HABANERO RESOURCES INC, CLAIMS BROWN, CLAIMS ARSHAD. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 67156, 116 PAGES ET 6 PLANS.
- RIVEST, H. 2008. HORIZONTAL LOOP ELECTROMAGNETIC SURVEY, LOGISTICS AND INTERPRETATION REPORT, TROILUS PROJECT. RESSOURCES UNIFIEES BEAUFIELD INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 64513, 25 PAGES ET 42 PLANS.
- ROY, P., MOORHEAD, J., GAUDREAU, R., MARCOUX, L., CYR, J., DESILETS, J., BERGERON, K., BEULLAC, R., BLACKBURN, D., BUTEAU, D., COTE, S., DIONNE, J., DOUCET, P., GIRARD, G., HOULE, P., LABBE, J Y., LACROIX, S., LESAGE, D., MADORE, L., NANTEL, S., OUELLET, S., TOGOLA, N. 2010. RAPPORT SUR LES ACTIVITES MINIERES AU QUEBEC 2009. MRNF. DV 2010-01, 92 PAGES.
- SIGEOM, 2018, MRNQ. ACCESSED FROM HTTP://SIGEOM.MINES.GOUV.QC.CA
- SIMARD, A., 1987, STRATIGRAPHIE ET VOLCANISME DANS LA PARTIE ORIENTALE DE LA BANDE VOLCANO-SEDIMENTAIRE ARCHEENNE FROTET-EVANS. MINISTERE DE L'ÉNERGIE ET DES RESSOURCES, QUEBEC; MB 87-17
- SIMARD, G., MADORE, L., LANGLAIS, L. 1993. RAPPORT SUR LES TRAVAUX D'EXPLORATION, PROJET DILEO. EXPLORATIONS NORANDA LTEE. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 52272, 61 PAGES ET 2 PLANS.

- SIMONEAU, P. 2002. LEVES DE MAGNETOMETRIE ET DE POLARISATION PROVOQUEE EFFECTUES SUR LA PROPRIETE TESTARD (1314), GRILLE EST, REGION DU LAC TROILUS. SOQUEM INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 59411, 13 PAGES ET 32 PLANS.
- SIMONEAU, P., GAUCHER, E. 1994. LEVE DE PULSE EM SUR LA PROPRIETE TROILUS SUD. EXPLORATIONS MUSCOCHO LTEE, CORPORATION MINIERE METALL. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 52922, 99 PAGES ET 34 PLANS.
- STEWART, W. 1996. REPORT ON 1995 DIAMOND DRILLING, LAC HUDSON PROJECT. EASTMAIN RESOURCES INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 54627, 92 PAGES ET 1 PLAN.
- ST-HILAIRE, C. 1999. LEVE AEROMAGNETIQUE ET SPECTROMETRIQUE, REGION DE TROILUS. CORPORATION MINIERE INMET. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 59389, 23 PAGES ET 35 PLANS.
- TROOP, A J. 1964. DIAMOND DRILL HOLE LOGS WITH ASSAY RESULTS. ICON SYND, CLAIMS BECKETT. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 14176. 16 PAGES ET 1 PLAN.
- TSHIMBALANGA, S. 2004. LEVES DE POLARISATION PROVOQUEE ET DE MAGNETOMETRIE EFFECTUES SUR LA PROPRIETE DILEO-NORD, REGION DE TROILUS. SOQUEM INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 61201, 13 PAGES ET 32 PLANS.
- TSHIMBALANGA, S. 2007. LEVE DE POLARISATION PROVOQUEE, PROPRIETE DILEO-NORD. SOQUEM INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 64208, 13 PAGES ET 29 PLANS.
- TOMKINS, A.G., PATTISON, D.R., ZALESKI, E. 2004. THE HEMLO GOLD DEPOSIT AS A TYPE EXAMPLE OF GENERATION AND MOBILIZATION OF GOLD-RICH SULFOSALT MELT. ECONOMIC GEOLOGY, VOL. 99, P. 1063-1084.
- VENTER, N., ORTA, M., PLASTOW, G., LEGAULT, J. 2015. REPORT ON A HELICOPTER-BORNE VERSATILE TIME DOMAIN ELECTROMAGNETIC AND HORIZONTAL MAGNETIC GRADIOMETER GEOPHYSICAL SURVEY, TROILUS PROJECT. FIRST QUANTUM MINERALS LTD. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 69000, 65 PAGES ET 99 PLANS.
- VERMETTE, D. 1995. RAPPORT SUR LES TRAVAUX D'EXPLORATION, ETE 1995, PROPRIETES ROBERT 1, 2, 3. PLACER DOME CANADA LTEE, MINES ET EXPLORATION NORANDA INC. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 53468, 127 PAGES ET 5 PLANS.
- VINCENT, R., NIEMINEN, R., BOGNAR, B. 1997. FORAGE 1997 (DEUXIEME PARTIE), PROJET TROILUS NORD. CORPORATION MINIERE INMET.
 - RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 56326, 237 PAGES ET 14 PLANS.
- WOOLHAM, R W. 1993. REPORT ON A COMBINED HELICOPTER-BORNE MAGNETIC AND ELECTROMAGNETIC SURVEY, LAC FROTET AREA, MONIQUE EXTRACTION. INCO LTEE. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 52602, 46 PAGES ET 4 PLANS.
- ZUIDERVEEN, J., BRODIE-BROWN, H. 1988. REPORT ON 1987 GEOLOGICAL MAPPING AND LITHOGEOCHEMICAL PROGRAM, TROILUS EAST PROPERTY. EXPLORATIONS MUSCOCHO LTEE. RAPPORT STATUTAIRE SOUMIS AU GOUVERNEMENT DU QUEBEC. GM 47325, 43 PAGES ET 10 PLANS.

CERTIFICATE OF THE FIRST AUTHOR

- I, Thomas Hawkins, PGeo, do hereby certify that:
- 1) I am a geologist and Vice President of Exploration of Kenorland Minerals, living at 102 Deep Dene Road, V7S 1A2
- 2) I graduated with a MSci degree in Geology and Geophysics from the Imperial College, London in 2006, and a PhD in Geology from the University of Brighton in 2011.
- 3) I am a Professional Geoscientist registered in good standing with the *Ordre des géologues du Québec*, licence no 2200, and with the The Association of Professional Engineers and Geoscientists of British Columbia, licence no 39892.
- 4) I have been practicing my profession for the past 12 years and have been active in the mining industry for the past 18 years. My technical expertise includes management of exploration programs, assessment of early stage mineral projects, field mapping, and production of genetic models for base metal deposits.
- 5) I have read the definition of "qualified person" set out in the National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association and past relevant work experience, I fulfil the requirements to be a qualified person for the purposes of NI 43-101.
- 6) I am a co-author of all sections of the technical report titled NI 43-101 Technical Report for the Frotet Gold Project and dated *December 16, 2020* (the "Technical Report") relating to the Frotet project. I was personally onsite from 5th of March 2020 until the 19th of March 2020 for 14 days.
- 7) I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
- 8) I am an employee of Kenorland Minerals and Northway Resources
- 10) I am not independent of the issuer, I am not independent of the vendor, nor am I idependent of the property.
- 11) I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 12) I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report

27 Novemeber, 2020,

Thomas Hawkins, P.Geo., OGQ # 2200

Certificate of the Qualified Person

I, Rémi Charbonneau, P.Geo., Ph.D., do hereby certify that:

I reside at the 7667 Chateaubriand Street, Montreal, Quebec, Canada H2R 2M2 and I am currently Associate of Inlandsis Consultants s.e.n.c., located at the same address.

This certificate accompanies the report entitled "NI 43-101 Technical Report for the Frotet Gold Project" In accordance with National Instrument 43-101 dated by June 30, 2011.

I received a B.Sc. in Geology from the University of Montreal in 1986 and a Ph.D. degree in Glacial Geology in 1995 from the same institution. I have been working as a contract geologist in mineral exploration since 1995_including several gold projects of orogenic type and Archean lode type. I am an active Professional Geologist presently inscribed to the board of the *Ordre des Géologues du Québec*, permit # 290. I am a qualified person with respect to the Frotet Property.

As the Qualified Person for the technical report titled NI 43-101 Technical Report for the Frotet Gold Project and dated *December 16 2020* (the "Technical Report"), I take responsibility for the preparation of the entire report.

As the Qualified Person for the Technical Report, I take responsibility for all items in the report.

I accessed the Property on October 9, 2017 for verification of road access in company of Francis McDonald of Kenorland and from August 4 to August 6, 2019 to brief the sampling team and where I observed mineralized boulder from the Regnault Target Area.

I am a Qualified Person for the purposes of this report. I am independent of Northway Resources Inc as well as Kenorland Minerals Ltd as set out in section 1.5 of NI 43-101. I am also independent of the Frotet Property, and all property vendors.

I sporadically contribute to the 2017 to 2020 exploration programs on the Frotet Property as a contract geologist for Kenorland. I have no other prior involvement with the Property.

I have read NI 43-101 and confirm that this Technical Report has been prepared in accordance therewith.

As of the date of this Technical report, to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.

December 16, 2020 Rémi Charbonneau

Ph.D. P.Geo, OGQ #290

CONSENT OF QUALIFIED PERSON

November 26, 2020

TO: TSX Venture Exchange (the "Exchange")

RE: Kenorland Minerals Ltd – Northway Resources Corp

I, Rémi Charbonneau, consent to the submission of the technical report titled "NI 43-101 Technical Report for the Frotet Gold Project" dated September 26, 2020 (the "**Technical Report**") to the Exchange and to the public filing of the Technical Report.

I also consent to the inclusion of extracts from, or a summary of the Technical Report in the written disclosure contained in the Corporation's filing statement dated March 7, 2017 (the "Filing Statement") and to the reference to the Technical Report in the Filing Statement.

I certify that I have read the Filing Statement and that the Filing Statement fairly and accurately represents the information in the sections of the Technical Report for which I am responsible and that I have no reason to believe that there is any misrepresentation contained in the Filing Statement which is derived from the Technical Report or of which I am otherwise aware.

Sincerely,

Rémi Charbonneau, P.Geo., Ph.D. OGQ # 290

December 16, 2020

28.0 Appendix A

Mining		Type of	NTS		Title				Excess	Work	Title
Title	Title Ownership	Polygon	Sheet	Location	Area	Status	Date Staked	Expiry Date	Work	Expenditur	Renewal
Number		,8			(ha)				Cumulated	e Required	Fees
	Kenorland Minerals Ltd.			32J15 X 0025							
2457876	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0050 0	54.24	Active	2016-08-17	2021-08-16	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2457877	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	00510	54.24	Active	2016-08-17	2021-08-16	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2457878	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0052 0	54.24	Active	2016-08-17	2021-08-16	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2457879	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.24	Active	2016-08-17	2021-08-16	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0026							
2457880	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.23	Active	2016-08-17	2021-08-16	1922.34	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0026							
2457881	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.23	Active	2016-08-17	2021-08-16	1196.18	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0026							
2457882	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.23	Active	2016-08-17	2021-08-16	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0027							
2457883	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.22	Active	2016-08-17	2021-08-16	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2558326	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0037 0	54.51	Active	2020-03-06	2023-03-05	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2558327	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0038 0	54.51	Active	2020-03-06	2023-03-05	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2558328	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0049 0	54.51	Active	2020-03-06	2023-03-05	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0025							
2558329	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0053 0	54.53	Active	2020-03-06	2023-03-05	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0025							
2558330	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0054 0	54.53	Active	2020-03-06	2023-03-05	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0026							
2558331	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0053 0	54.52	Active	2020-03-06	2023-03-05	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0022							
2490411	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0023 0	54.27	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2490412	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0024 0	54.27	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2490413	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0025 0	54.27	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490419	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0023 0	54.26	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490420	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0023 0	54.25	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490421	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0023 0	54.24	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2490422	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0023 0	54.23	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490427	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.40	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490428	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.40	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490429	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.40	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490430	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.40	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490431	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.40	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490432	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.40	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490433	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.40	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490434	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.40	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490435	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.39	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0010							
2490436	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.39	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490437	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.39	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0010							
2490438	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.39	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490439	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.39	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490440	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.39	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490441	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.39	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490443	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.39	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2490445	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.38	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2490446	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.38	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2490447	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.38	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2490448	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.38	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2490449	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.38	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2490450	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.38	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2490451	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.38	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2490452	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.38	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0012							
2490455	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.37	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0012							
2490456	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.37	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0012							
2490457	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.37	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0012							
2490458	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.37	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0012							
2490459	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.37	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0013							
2490462	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.36	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0013							
2490463	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.36	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0013							
2490464	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.36	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0014							
2490465	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.35	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0014							
2490466	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.35	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2490467	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.31	Active	2017-04-24	2022-04-23	369.31	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2490468	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.31	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2490469	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0021 0	54.31	Active	2017-04-24	2022-04-23	19.31	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490470	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.30	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490471	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.30	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490472	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0021 0	54.30	Active	2017-04-24	2022-04-23	213.46	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2490473	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.29	Active	2017-04-24	2022-04-23	357.03	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2490474	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.29	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2490475	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0021 0	54.29	Active	2017-04-24	2022-04-23	213.46	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2490476	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.28	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2490477	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.28	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2490478	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0021 0	54.28	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2490479	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.27	Active	2017-04-24	2022-04-23	6.73	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0022							
2490480	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.27	Active	2017-04-24	2022-04-23	103.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2490481	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0021 0	54.27	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2490482	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0022 0	54.27	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490483	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.26	Active	2017-04-24	2022-04-23	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490484	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0021 0	54.26	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490485	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0022 0	54.26	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490486	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.25	Active	2017-04-24	2022-04-23	22.91	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490487	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0021 0	54.25	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490488	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0022 0	54.25	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490489	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.24	Active	2017-04-24	2022-04-23	186.66	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490490	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0021 0	54.24	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490491	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0022 0	54.24	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2490492	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.23	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2490493	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0021 0	54.23	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2490494	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0022 0	54.23	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490520	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.43	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0005							
2490521	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.43	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0005							
2490522	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.43	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0005							
2490523	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.43	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490540	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.42	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490541	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.42	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490547	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0024 0	54.26	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490548	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0025 0	54.26	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490553	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0024 0	54.25	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490554	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0025 0	54.25	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490558	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0024 0	54.24	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490559	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0025 0	54.24	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2490563	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0024 0	54.23	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490015	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0024 0	54.43	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490016	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0025 0	54.43	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490017	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0026 0	54.43	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490018	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0027 0	54.43	Active	2017-04-21	2022-04-20	74.35	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490019	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0028 0	54.43	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490020	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0024 0	54.42	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490021	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0025 0	54.42	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490022	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0026 0	54.42	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0006							
2490023	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0027 0	54.42	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490024	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0028 0	54.42	Active	2017-04-21	2022-04-20	215.54	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490025	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0025 0	54.41	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490026	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0026 0	54.41	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490027	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0027 0	54.41	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490028	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0028 0	54.41	Active	2017-04-21	2022-04-20	215.54	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490031	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0027 0	54.41	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490032	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0028 0	54.41	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490035	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0027 0	54.40	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490036	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0028 0	54.40	Active	2017-04-21	2022-04-20	11.41	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2490039	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0004 0	54.33	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2490040	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0005 0	54.33	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2490041	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0006 0	54.33	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2490042	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0004 0	54.32	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2490043	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0005 0	54.32	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2490044	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0006 0	54.32	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2490045	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0004 0	54.31	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0018							
2490046	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0005 0	54.31	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0018							
2490047	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0006 0	54.31	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490048	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0004 0	54.30	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490049	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0005 0	54.30	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490050	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0006 0	54.30	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2490058	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0005 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2490059	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0006 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490062	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0006 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490082	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0029 0	54.45	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490083	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	00300	54.45	Active	2017-04-21	2022-04-20	168.03	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490084	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0031 0	54.45	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490085	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.45	Active	2017-04-21	2022-04-20	243.97	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490086	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.45	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490087	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.45	Active	2017-04-21	2022-04-20	12.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490088	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490089	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.45	Active	2017-04-21	2022-04-20	10.47	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490090	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.45	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0003							
2490091	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490092	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.45	Active	2017-04-21	2022-04-20	213.71	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0003							
2490093	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.45	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490094	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490095	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0042 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490096	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0043 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490097	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0044 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490098	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0045 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490099	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0046 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490100	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0047 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490101	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0048 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490102	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0049 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490103	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0050 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490111	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0029 0	54.44	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490112	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0030 0	54.44	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490113	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0031 0	54.44	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490114	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.44	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490115	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.44	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0004							
2490116	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.44	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490117	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.44	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0004							
2490118	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.44	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490119	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.44	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490120	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.44	Active	2017-04-21	2022-04-20	112.52	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490121	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.44	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490125	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0028 0	54.47	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490126	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0029 0	54.47	Active	2017-04-21	2022-04-20	215.52	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490127	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0030 0	54.47	Active	2017-04-21	2022-04-20	228.11	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490128	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0031 0	54.47	Active	2017-04-21	2022-04-20	215.52	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490129	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.47	Active	2017-04-21	2022-04-20	209.82	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490130	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.47	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490131	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.47	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490132	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.47	Active	2017-04-21	2022-04-20	369.32	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490133	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.47	Active	2017-04-21	2022-04-20	369.32	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490134	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.47	Active	2017-04-21	2022-04-20	581.96	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490135	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.47	Active	2017-04-21	2022-04-20	174.32	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490144	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.43	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0006							
2490145	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.43	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0007							
2490147	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.42	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0007							
2490148	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.42	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490160	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.42	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490161	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.42	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490162	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.42	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490163	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.42	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490164	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.42	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490165	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.41	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490166	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.41	Active	2017-04-21	2022-04-20	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490167	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0042 0	54.41	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2490176	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.31	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2490177	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.31	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490178	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.30	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490179	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.30	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2490180	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.29	Active	2017-04-21	2022-04-20	213.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2490181	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.29	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0021							
2490182	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.28	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0021							
2490183	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.28	Active	2017-04-21	2022-04-20	213.47	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2490184	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.28	Active	2017-04-21	2022-04-20	6.73	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0022							
2490185	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.27	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2490186	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.27	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2490187	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.27	Active	2017-04-21	2022-04-20	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490188	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.26	Active	2017-04-21	2022-04-20	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490189	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.26	Active	2017-04-21	2022-04-20	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490190	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.26	Active	2017-04-21	2022-04-20	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2490191	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.26	Active	2017-04-21	2022-04-20	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490192	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.25	Active	2017-04-21	2022-04-20	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490193	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.25	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490194	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.25	Active	2017-04-21	2022-04-20	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2490195	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.25	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490196	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.24	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490197	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.24	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490198	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.24	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2490199	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.24	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2490200	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.23	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0026							
2490201	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.23	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0026							
2490202	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.23	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0026							
2490203	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.23	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0027							
2490204	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.22	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0027							
2490205	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.22	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490258	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.41	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490259	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.41	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490260	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.41	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490261	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.41	Active	2017-04-21	2022-04-20	159.43	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490262	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.41	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490263	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.41	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490264	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.41	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490265	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.41	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490275	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.40	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490276	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.40	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490277	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.40	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490278	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.40	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490279	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.40	Active	2017-04-21	2022-04-20	159.44	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490280	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.40	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490281	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.40	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0010							
2490288	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.39	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490289	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.39	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490290	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.39	Active	2017-04-21	2022-04-20	159.44	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490291	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.39	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490292	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.39	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0010							
2490293	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.39	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2490294	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.38	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0017							
2490295	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.32	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0009							
2490296	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00010	54.40	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0009							
2490297	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.40	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0010							
2490300	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0001 0	54.39	Active	2017-04-21	2022-04-20	159.44	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0010							
2490301	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.39	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0011							
2490305	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0001 0	54.38	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0011							
2490306	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.38	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0011							
2490307	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0003 0	54.38	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0012							
2490310	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00010	54.37	Active	2017-04-21	2022-04-20	159.44	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0013							
2490311	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00010	54.36	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2490315	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.34	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0015							
2490316	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.34	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2490317	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.34	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2490318	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.34	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2490320	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.33	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2490321	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.33	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2490322	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.33	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2490323	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.33	Active	2017-04-21	2022-04-20	19.92	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2490324	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.33	Active	2017-04-21	2022-04-20	12.59	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2490326	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.32	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2490327	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0017 0	54.32	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2490328	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0018 0	54.32	Active	2017-04-21	2022-04-20	369.32	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2490329	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0019 0	54.32	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2490330	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0020 0	54.32	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2490333	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.31	Active	2017-04-21	2022-04-20	369.32	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490334	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.30	Active	2017-04-21	2022-04-20	356.73	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0020							
2490335	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0016 0	54.29	Active	2017-04-21	2022-04-20	6.73	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0001							
2493915	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.47	Active	2017-05-26	2022-05-25	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2493916	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.47	Active	2017-05-26	2022-05-25	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0001							
2493917	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.47	Active	2017-05-26	2022-05-25	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2493918	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.47	Active	2017-05-26	2022-05-25	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2493941	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0058 0	54.48	Active	2017-05-26	2022-05-25	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489564	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.47	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489565	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.47	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489566	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.47	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489567	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0042 0	54.47	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489568	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0043 0	54.47	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489569	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0044 0	54.47	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489570	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0045 0	54.47	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489571	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0046 0	54.47	Active	2017-04-20	2022-04-19	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489572	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0047 0	54.47	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489573	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0048 0	54.47	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489574	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0049 0	54.47	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489575	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0050 0	54.47	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489576	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	00510	54.47	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0001							
2489577	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0052 0	54.47	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489578	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.47	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0002							
2489580	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0029 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489581	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0030 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489582	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0031 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489583	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489584	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489585	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489586	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489587	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.46	Active	2017-04-20	2022-04-19	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489588	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489589	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489590	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.46	Active	2017-04-20	2022-04-19	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489591	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.46	Active	2017-04-20	2022-04-19	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489592	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.46	Active	2017-04-20	2022-04-19	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489593	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0042 0	54.46	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489594	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0043 0	54.46	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489595	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0044 0	54.46	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489596	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0045 0	54.46	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0002							
2489597	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0046 0	54.46	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0002							
2489598	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0047 0	54.46	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489599	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0048 0	54.46	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489600	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0049 0	54.46	Active	2017-04-20	2022-04-19	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490988	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0040 0	54.44	Active	2017-04-26	2022-04-25	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490989	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0041 0	54.44	Active	2017-04-26	2022-04-25	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2499069	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.30	Active	2017-08-01	2022-07-31	19.31	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2499070	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.29	Active	2017-08-01	2022-07-31	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2499193	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.24	Active	2017-08-04	2022-08-03	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2499194	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.24	Active	2017-08-04	2022-08-03	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2499023	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.42	Active	2017-07-31	2022-07-30	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2499024	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.42	Active	2017-07-31	2022-07-30	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2499025	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.41	Active	2017-07-31	2022-07-30	133.24	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2499026	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0039 0	54.41	Active	2017-07-31	2022-07-30	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0024							
2492930	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.25	Active	2017-05-24	2022-05-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0024							
2492931	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.25	Active	2017-05-24	2022-05-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2492932	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.24	Active	2017-05-24	2022-05-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2492933	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.24	Active	2017-05-24	2022-05-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0026							
2492934	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.23	Active	2017-05-24	2022-05-23	356.73	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0026							
2492935	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.23	Active	2017-05-24	2022-05-23	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0026							
2492936	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.23	Active	2017-05-24	2022-05-23	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0026							
2492937	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.23	Active	2017-05-24	2022-05-23	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0026							
2492938	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.23	Active	2017-05-24	2022-05-23	13.46	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2492939	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0001 0	54.23	Active	2017-05-24	2022-05-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2492940	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.23	Active	2017-05-24	2022-05-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2508614	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0027 0	54.50	Active	2018-01-10	2023-01-09	369.31	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2508615	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0028 0	54.50	Active	2018-01-10	2023-01-09	228.10	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2508616	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0023 0	54.49	Active	2018-01-10	2023-01-09	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2508617	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0024 0	54.49	Active	2018-01-10	2023-01-09	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2508618	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0028 0	54.49	Active	2018-01-10	2023-01-09	408.35	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2508619	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0023 0	54.48	Active	2018-01-10	2023-01-09	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2508620	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0025 0	54.48	Active	2018-01-10	2023-01-09	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2508621	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0026 0	54.48	Active	2018-01-10	2023-01-09	18.28	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2508622	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0027 0	54.48	Active	2018-01-10	2023-01-09	206.13	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2508623	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0026 0	54.47	Active	2018-01-10	2023-01-09	228.10	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J10 X 0030							
2508624	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0024 0	54.48	Active	2018-01-10	2023-01-09	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0005							
2499662	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.43	Active	2017-08-11	2022-08-10	215.52	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0005							
2490347	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0029 0	54.43	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490348	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	00300	54.43	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490349	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0031 0	54.43	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490350	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.43	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490351	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.43	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490352	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.43	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490353	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.43	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2490354	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.43	Active	2017-04-24	2022-04-23	256.50	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490355	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0029 0	54.42	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490356	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0030 0	54.42	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490357	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0031 0	54.42	Active	2017-04-24	2022-04-23	369.32	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490358	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.42	Active	2017-04-24	2022-04-23	369.32	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490359	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.42	Active	2017-04-24	2022-04-23	18.29	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490360	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.42	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490361	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.42	Active	2017-04-24	2022-04-23	11.40	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490362	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.42	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0006							
2490363	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.42	Active	2017-04-24	2022-04-23	295.91	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0006							
2490364	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0038 0	54.42	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0007							
2490365	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0029 0	54.41	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490366	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	00300	54.41	Active	2017-04-24	2022-04-23	228.12	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490367	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0031 0	54.41	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490368	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.41	Active	2017-04-24	2022-04-23	15.87	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490369	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.41	Active	2017-04-24	2022-04-23	18.29	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490370	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.41	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490371	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.41	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0007							
2490372	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.41	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490373	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0029 0	54.41	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490374	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0030 0	54.41	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490375	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0031 0	54.41	Active	2017-04-24	2022-04-23	18.29	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490376	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.41	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490377	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.41	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490378	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0034 0	54.41	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490379	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0035 0	54.41	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0008							
2490380	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0036 0	54.41	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0008							
2490381	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0037 0	54.41	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0009							
2490382	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0029 0	54.40	Active	2017-04-24	2022-04-23	11.40	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0009							
2490383	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0030 0	54.40	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490384	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0031 0	54.40	Active	2017-04-24	2022-04-23	5.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490385	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0032 0	54.40	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0009							
2490386	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0033 0	54.40	Active	2017-04-24	2022-04-23	11.40	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2490390	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0022 0	54.30	Active	2017-04-24	2022-04-23	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2490395	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0022 0	54.29	Active	2017-04-24	2022-04-23	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2490396	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0023 0	54.29	Active	2017-04-24	2022-04-23	6.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2490397	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0024 0	54.29	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2490398	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0025 0	54.29	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2490402	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0022 0	54.28	Active	2017-04-24	2022-04-23	356.73	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2490403	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0023 0	54.28	Active	2017-04-24	2022-04-23	29.63	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2490404	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0024 0	54.28	Active	2017-04-24	2022-04-23	200.70	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2490405	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0025 0	54.28	Active	2017-04-24	2022-04-23	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489604	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0023 0	54.47	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489607	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0019 0	54.46	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2489608	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0022 0	54.46	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0003							
2489609	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0019 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2489610	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0020 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0003							
2489611	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0021 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2489612	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0022 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2489613	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0023 0	54.45	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2489617	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0020 0	54.44	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2489618	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0021 0	54.44	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2489619	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0022 0	54.44	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2489620	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0023 0	54.44	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2489626	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0022 0	54.43	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0005							
2489627	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0023 0	54.43	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489644	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0004 0	54.34	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489645	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0005 0	54.34	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489646	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0001 0	54.33	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489647	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.33	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489648	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0003 0	54.33	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489649	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0001 0	54.32	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489650	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.32	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0017							
2489651	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0003 0	54.32	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2489652	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00010	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0018							
2489653	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.31	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2489654	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0003 0	54.31	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489655	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00010	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489656	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.30	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489658	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00010	54.29	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489659	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.29	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2489661	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00010	54.28	Active	2017-04-21	2022-04-20	156.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2489662	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.28	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489664	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0001 0	54.27	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489665	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489667	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0001 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489668	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489669	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0003 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2489670	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00010	54.25	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2489671	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.25	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2489673	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00010	54.24	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2489674	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0002 0	54.24	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J10 X 0029							
2489676	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0029 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25

	Kenorland Minerals Ltd.			32J10 X 0029							
2489677	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0030 0	54.49	Active	2017-04-21	2022-04-20	18.30	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489678	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0031 0	54.49	Active	2017-04-21	2022-04-20	18.30	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489679	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0032 0	54.49	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489680	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0033 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489681	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0034 0	54.49	Active	2017-04-21	2022-04-20	18.30	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489682	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0035 0	54.49	Active	2017-04-21	2022-04-20	18.30	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489683	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0036 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489684	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0037 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489685	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0038 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489686	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0039 0	54.49	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489687	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0040 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489688	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0041 0	54.49	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489689	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0042 0	54.49	Active	2017-04-21	2022-04-20	0.27	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489690	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0043 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489691	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0044 0	54.49	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489692	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0045 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489693	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0030 0	54.48	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489694	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0031 0	54.48	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25

	Kenorland Minerals Ltd.			32J10 X 0030							
2489695	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0032 0	54.48	Active	2017-04-21	2022-04-20	11.41	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489696	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0033 0	54.48	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489697	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0034 0	54.48	Active	2017-04-21	2022-04-20	234.12	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489698	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0035 0	54.48	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489699	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0036 0	54.48	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489700	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0037 0	54.48	Active	2017-04-21	2022-04-20	199.63	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489701	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0038 0	54.48	Active	2017-04-21	2022-04-20	149.30	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489702	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0039 0	54.48	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489703	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0040 0	54.48	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489704	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0041 0	54.48	Active	2017-04-21	2022-04-20	6.64	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489705	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0042 0	54.48	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489706	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0043 0	54.48	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489707	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0045 0	54.48	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489708	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0047 0	54.48	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489709	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0048 0	54.48	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J10 X 0030							
2489710	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0049 0	54.48	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489711	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0050 0	54.48	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489712	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	00510	54.48	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J10 X 0030							
2489713	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0052 0	54.48	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489714	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0053 0	54.48	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0030							
2489715	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0054 0	54.48	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489724	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0047 0	54.29	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489725	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0048 0	54.28	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489726	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0049 0	54.28	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489727	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0051 0	54.28	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489728	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0052 0	54.28	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489729	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.28	Active	2017-04-21	2022-04-20	63.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489730	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.28	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489731	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.28	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489732	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.28	Active	2017-04-21	2022-04-20	13.49	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489733	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.28	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489734	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.28	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489735	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.28	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0021							
2489736	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.28	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0022							
2489737	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	00510	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0022							
2489738	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0052 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0022							
2489739	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.27	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0022							
2489740	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.27	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0022							
2489741	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.27	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0022							
2489742	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.27	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0022							
2489743	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.27	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0022							
2489744	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.27	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0022							
2489745	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.27	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0022							
2489746	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0023							
2489747	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.26	Active	2017-04-21	2022-04-20	156.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0023							
2489748	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.26	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0023							
2489749	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.26	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0023							
2489750	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.26	Active	2017-04-21	2022-04-20	213.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0023							
2489751	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.26	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0023							
2489752	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.26	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0023							
2489753	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0023							
2489754	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.26	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0024							
2489755	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.25	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0024							
2489756	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.25	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0024							
2489757	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.25	Active	2017-04-21	2022-04-20	13.47	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0024							
2489758	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.25	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0024							
2489759	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.25	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0024							
2489760	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.25	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2489761	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.24	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2489762	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.24	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0025							
2489763	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.24	Active	2017-04-21	2022-04-20	26.96	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489764	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0006 0	54.34	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489765	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0007 0	54.34	Active	2017-04-21	2022-04-20	26.95	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489766	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0008 0	54.34	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489767	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0009 0	54.34	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489768	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0007 0	54.33	Active	2017-04-21	2022-04-20	13.47	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489769	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0008 0	54.33	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489770	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0009 0	54.33	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489771	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0007 0	54.32	Active	2017-04-21	2022-04-20	63.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489772	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0008 0	54.32	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0017							
2489773	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0009 0	54.32	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2489774	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0007 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0018							
2489775	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0008 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2489776	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0009 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489777	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0007 0	54.30	Active	2017-04-21	2022-04-20	120.22	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489778	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0008 0	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489779	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0009 0	54.30	Active	2017-04-21	2022-04-20	70.20	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489780	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0007 0	54.29	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489781	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0008 0	54.29	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489782	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0009 0	54.29	Active	2017-04-21	2022-04-20	13.47	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2489783	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0007 0	54.28	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2489784	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0008 0	54.28	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2489785	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0009 0	54.28	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489786	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0007 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489787	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0008 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489788	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0009 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489789	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0007 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489790	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0008 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0023							
2489791	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0009 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0017							
2489804	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0050 0	54.32	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0017							
2489805	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0051 0	54.32	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489806	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0050 0	54.31	Active	2017-04-21	2022-04-20	170.22	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489807	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0051 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489808	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0052 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489809	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489810	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489811	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489812	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.31	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489813	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489814	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489815	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.31	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0018							
2489816	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489817	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0046 0	54.30	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489818	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0047 0	54.30	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489819	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0048 0	54.30	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489820	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0049 0	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489821	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0050 0	54.30	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489822	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	00510	54.30	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0019							
2489823	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0052 0	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489824	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.30	Active	2017-04-21	2022-04-20	56.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489825	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0054 0	54.30	Active	2017-04-21	2022-04-20	9.15	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489826	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489827	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489828	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.30	Active	2017-04-21	2022-04-20	34.03	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489829	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.30	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489830	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.30	Active	2017-04-21	2022-04-20	13.47	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0019							
2489831	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489832	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0048 0	54.29	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489833	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0049 0	54.29	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489834	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0050 0	54.29	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489835	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	00510	54.29	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489836	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0052 0	54.29	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489837	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0053 0	54.29	Active	2017-04-21	2022-04-20	11.83	1200.00	66.25
	Kenorland Minerals Ltd.]	32J15 X 0020							
2489838	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0055 0	54.29	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489839	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.29	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489840	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.29	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0020							
2489841	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.29	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489842	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.29	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0020							
2489843	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.29	Active	2017-04-21	2022-04-20	20.22	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489844	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0010 0	54.34	Active	2017-04-21	2022-04-20	26.07	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489845	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0011 0	54.34	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489846	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0010 0	54.33	Active	2017-04-21	2022-04-20	13.47	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489847	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0011 0	54.33	Active	2017-04-21	2022-04-20	19.33	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489848	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0010 0	54.32	Active	2017-04-21	2022-04-20	26.06	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489849	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0011 0	54.32	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2489850	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0010 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2489851	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0011 0	54.31	Active	2017-04-21	2022-04-20	25.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489852	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0010 0	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489853	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0011 0	54.30	Active	2017-04-21	2022-04-20	330.88	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489854	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	00100	54.29	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489855	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0011 0	54.29	Active	2017-04-21	2022-04-20	13.47	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489856	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.29	Active	2017-04-21	2022-04-20	19.33	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2489857	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0010 0	54.28	Active	2017-04-21	2022-04-20	134.74	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0021							
2489858	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0011 0	54.28	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0021							
2489859	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.28	Active	2017-04-21	2022-04-20	63.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489860	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0010 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489861	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0011 0	54.27	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489862	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.27	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489863	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0010 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489864	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0011 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489865	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2489868	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.25	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2489890	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.38	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2489891	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.38	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0011							
2489892	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.38	Active	2017-04-21	2022-04-20	11.97	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0012							
2489898	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.37	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0012							
2489899	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.37	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0012							
2489900	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.37	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0013							
2489903	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.36	Active	2017-04-21	2022-04-20	45.65	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0013							
2489904	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.36	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J15 X 0016							
2489915	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0050 0	54.33	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0016							
2489918	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0060 0	54.33	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25

	Kenorland Minerals Ltd.			32J15 X 0017							
2489919	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0052 0	54.32	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0017							
2489920	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0056 0	54.32	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0017							
2489921	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0057 0	54.32	Active	2017-04-21	2022-04-20	20.22	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0017							
2489922	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0058 0	54.32	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0017							
2489923	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0059 0	54.32	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489924	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.34	Active	2017-04-21	2022-04-20	19.33	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489925	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.34	Active	2017-04-21	2022-04-20	369.34	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0015							
2489926	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.34	Active	2017-04-21	2022-04-20	369.33	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489927	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.33	Active	2017-04-21	2022-04-20	19.33	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489928	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.33	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0016							
2489929	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.33	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489930	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.32	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489931	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.32	Active	2017-04-21	2022-04-20	369.34	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489932	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.32	Active	2017-04-21	2022-04-20	369.33	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0017							
2489933	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.32	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2489934	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.31	Active	2017-04-21	2022-04-20	19.33	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2489935	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.31	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0018							
2489936	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.31	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0018							
2489937	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.31	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489938	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0012 0	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489939	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.30	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0019							
2489940	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.30	Active	2017-04-21	2022-04-20	213.48	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489941	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.29	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0020							
2489942	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.29	Active	2017-04-21	2022-04-20	70.22	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2489943	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.28	Active	2017-04-21	2022-04-20	144.32	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2489944	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.28	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0021							
2489945	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.28	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489946	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.27	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489947	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.27	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0022							
2489948	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.27	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489949	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.26	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489950	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.26	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0023							
2489951	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.26	Active	2017-04-21	2022-04-20	6.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2489952	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.25	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J16 X 0024							
2489953	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.25	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0024							
2489954	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.25	Active	2017-04-21	2022-04-20	13.48	1200.00	66.25

	Kenorland Minerals Ltd.			32J16 X 0025							
2489955	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0013 0	54.24	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2489956	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.24	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0025							
2489957	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.24	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2489959	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0014 0	54.23	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J16 X 0026							
2489960	(96969) 100 % (responsable)	Cell 30" X 30"	32J16	0015 0	54.23	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489964	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0029 0	54.50	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489965	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0030 0	54.50	Active	2017-04-21	2022-04-20	369.33	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489966	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0031 0	54.50	Active	2017-04-21	2022-04-20	221.52	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489967	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0032 0	54.50	Active	2017-04-21	2022-04-20	369.33	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489968	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0033 0	54.50	Active	2017-04-21	2022-04-20	177.75	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489969	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0034 0	54.50	Active	2017-04-21	2022-04-20	215.54	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489970	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0035 0	54.50	Active	2017-04-21	2022-04-20	215.54	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489971	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0036 0	54.50	Active	2017-04-21	2022-04-20	206.19	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489972	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0037 0	54.50	Active	2017-04-21	2022-04-20	228.13	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489973	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0038 0	54.50	Active	2017-04-21	2022-04-20	933.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489974	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0039 0	54.50	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489975	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0040 0	54.50	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.		1	32J10 X 0028							
2489976	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0041 0	54.50	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25

	Kenorland Minerals Ltd.			32J10 X 0028							
2489977	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0042 0	54.50	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489978	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0043 0	54.50	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489979	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0044 0	54.50	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489980	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0045 0	54.50	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489981	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0046 0	54.50	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489982	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0047 0	54.50	Active	2017-04-21	2022-04-20	150.02	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489983	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0048 0	54.50	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489984	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0049 0	54.50	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489985	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0050 0	54.50	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489986	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0051 0	54.50	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489987	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0052 0	54.50	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489988	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0053 0	54.50	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0028							
2489989	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0054 0	54.50	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489990	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0046 0	54.49	Active	2017-04-21	2022-04-20	215.53	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489991	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0047 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489992	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0048 0	54.49	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489993	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0049 0	54.49	Active	2017-04-21	2022-04-20	356.74	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489994	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0050 0	54.49	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25

	Kenorland Minerals Ltd.			32J10 X 0029							
2489995	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0051 0	54.49	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489996	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0052 0	54.49	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489997	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0053 0	54.49	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0029							
2489998	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0054 0	54.49	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2489999	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0024 0	54.47	Active	2017-04-21	2022-04-20	146.57	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0001							
2490000	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0025 0	54.47	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2490001	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0024 0	54.46	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2490002	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0025 0	54.46	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2490003	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0026 0	54.46	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0002							
2490004	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0028 0	54.46	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490005	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0024 0	54.45	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490006	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0025 0	54.45	Active	2017-04-21	2022-04-20	11.42	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490007	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0026 0	54.45	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490008	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0027 0	54.45	Active	2017-04-21	2022-04-20	77.99	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0003							
2490009	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0028 0	54.45	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490010	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0024 0	54.44	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490011	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0025 0	54.44	Active	2017-04-21	2022-04-20	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490012	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0026 0	54.44	Active	2017-04-21	2022-04-20	329.69	1200.00	66.25

NI 43-101 Technical Report for the Frotet Gold Project

	Kenorland Minerals Ltd.			32J15 X 0004							
2490013	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0027 0	54.44	Active	2017-04-21	2022-04-20	5.71	1200.00	66.25
	Kenorland Minerals Ltd.			32J15 X 0004							
2490014	(96969) 100 % (responsable)	Cell 30" X 30"	32J15	0028 0	54.44	Active	2017-04-21	2022-04-20	215.62	1200.00	66.25

29.0 Appendix B

Mining		- ·	NITC		Title				Excess	Work	Title
Title	Title Ownership	Type of	NTS	Location	Area	Status	Date Staked	Expiry Date	Work	Expenditur	Renewal
Number	•	Polygon	Sheet		(ha)			. ,	Cumulated	e Required	Fees
	Kenorland Minerals Ltd.			32J10 X 0025	` '						
81202	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0030 0	54.53	Active	2005-06-29	2022-06-28	0.00	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0024							
2447975	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0032 0	54.54	Active	2016-06-13	2023-06-12	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0025							
2447976	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0032 0	54.53	Active	2016-06-13	2023-06-12	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0026							
2447977	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0032 0	54.52	Active	2016-06-13	2023-06-12	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2447992	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0031 0	54.51	Active	2016-06-13	2023-06-12	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2401433	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0025 0	54.51	Active	2014-03-26	2022-08-05	36004.37	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2401434	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0026 0	54.51	Active	2014-03-26	2022-08-05	34144.37	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2401435	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0027 0	54.51	Active	2014-03-26	2022-08-05	36394.37	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2401436	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0028 0	54.51	Active	2014-03-26	2022-08-05	34144.37	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0026							
2401444	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0025 0	54.52	Active	2014-03-26	2022-08-05	35772.16	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0026							
2401445	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0026 0	54.52	Active	2014-03-26	2022-08-05	34752.16	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0026							
2401446	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0027 0	54.52	Active	2014-03-26	2022-08-05	35352.16	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0026							
2401447	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0028 0	54.52	Active	2014-03-26	2022-08-05	34852.55	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0026							
2401448	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0029 0	54.52	Active	2014-03-26	2022-08-05	31752.16	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0025							
2401450	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0025 0	54.53	Active	2014-03-26	2022-08-05	33559.96	2500.00	66.25

	Kenorland Minerals Ltd.			32J10 X 0025							
2401506	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0026 0	54.53	Active	2014-03-26	2022-08-05	35282.46	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0025							
2401507	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0027 0	54.53	Active	2014-03-26	2022-08-05	25543.56	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0025							
2401508	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0028 0	54.53	Active	2014-03-26	2022-08-05	15820.25	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0025							
2401509	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0029 0	54.53	Active	2014-03-26	2022-08-05	18780.88	2500.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0026							
2510201	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	00300	54.52	Active	2018-01-23	2023-01-22	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0026							
2510202	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0031 0	54.52	Active	2018-01-23	2023-01-22	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2510203	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0029 0	54.51	Active	2018-01-23	2023-01-22	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0027							
2510204	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0030 0	54.51	Active	2018-01-23	2023-01-22	0.00	1200.00	66.25
	Kenorland Minerals Ltd.			32J10 X 0025							
2510280	(96969) 100 % (responsable)	Cell 30" X 30"	32J10	0031 0	54.53	Active	2018-01-23	2023-01-22	0.00	1200.00	66.25